Aspectos metodológicos del naturalismo matemático. La aproximación conjuntista de Maddy

ANTONIO CABA
Universidad de Málaga

RESUMEN
Entre otras razones, el reciente rechazo por parte de Maddy de la tesis de indispensabilidad significa que ya no considera el realismo como opción viable, tal como pensaba en los primeros noventa. Con objeto de proporcionar una teoría filosófica que cuadre con la práctica, propone una posición naturalista en la que la metodología de las matemáticas no necesita justificación extema a la propia matemática. Pese a todo, el campo elegido por Maddy para desarrollar su planteamiento, es decir, la justificación de los axiomas de la teoría de conjuntos, no ha cambiado. Este artículo trata de hacer un esquema crítico de los principales aspectos de este cambio.

PALABRAS CLAVE
FUNDAMENTACIÓN CONJUNTISTA–MADDY–NATURALISMO MATEMÁTICO

ABSTRACT
Among other reasons, Maddy’s recent rejection of the indispensability thesis means that she no longer sees realism as a viable option, as she did in the early 90’s. In order to provide a philosophical account of mathematics that squares with mathematical practice, she proposes a naturalistic position in which the methodology of mathematics is in no need of a justification external to mathematics. Nevertheless, the field chosen for Maddy to carry out her view, i.e., the justification of the axioms in set theory, has not changed. This paper presents a critical sketch of the outstanding aspects of this change.

KEY WORDS
SET-THEORETIC FOUNDATIONS–MADDY–MATHEMATICAL NATURALISM
I. INTRODUCCIÓN

El planteamiento que defendió Maddy en su trabajo de 1990 Realism in mathematics se fundamentaba en un compromiso parcial con algunas de las ideas de Quine y de Gödel. A grandes rasgos, cabe decir que del primero aceptaba el argumento de indispensabilidad, pero criticaba la ausencia de una explicación satisfactoria para la matemática pura. Con el segundo coincidía en el reconocimiento de formas de evidencia puramente matemáticas, pero lamentaba la falta de una argumentación correcta para la verdad matemática. En su libro más reciente Naturalism in mathematics, de 1997, se aprecia un cambio de marcha en su pensamiento que ha sido tildado incluso de dramático. Y aunque en algunos aspectos ambos desarrollos podrían entenderse como contradictorios, el objeto de su investigación ha permanecido constante, y continúa siendo el estatus de las cuestiones independientes en Teoría de Conjuntos (a partir de ahora TdC), y su relación con los nuevos axiomas que se presentan como candidatos a la ampliación de ZFC. La propia autora advierte esta continuidad e insiste en que su nuevo trabajo supone, en última instancia, un análisis más atento de los planteamientos desarrollados y de los pilares en los que fundamentó el realismo que defendió en su momento. Todo ello ha supuesto, entre otras cosas, una nueva lectura de Gödel y Quine.

Creo que una gran parte del desarrollo de Maddy sería vacía si la TdC fuese considerada, sin más, como una teoría matemática entre otras. Evidentemente, no es el caso, puesto que dicha teoría aspira a erigirse primus inter pares y a fundamentar el resto de las matemáticas. Por ello dedicaré la primera parte de este trabajo a plantear en qué términos y hasta qué punto acepta nuestra autora esta fundamentación. A continuación haré una breve reseña histórica con objeto de situar el caso de estudio en el que Maddy se desenvuelve para plantear su naturalismo, a saber, el estatus del axioma de constructibilidad. La parte central de este trabajo la constituye una exposición, más filosófica que técnica, de su nueva visión del asunto.

II. LA TEORÍA DE CONJUNTOS COMO FUNDAMENTACIÓN

Aunque hay opiniones divergentes entre los matemáticos, la impresión generalizada es que la TdC por sí sola es capaz de proporcionar un marco adecuado en el que desarrollar gran parte de la matemática actual. Los planteamientos van desde la mera y vaga afirmación de que, con mayor o menor grado de precisión, todas las ramas de la matemática pueden desarrollarse en el seno de la TdC, hasta la comprometida afirmación ontológica de que los objetos matemáticos pueden identificarse con determinados conjuntos, y que los teoremas de cualquier rama de las matemáticas no son sino enunciados acerca de conjuntos.
Aspectos metodológicos del naturalismo matemático

En cualquier caso, se admite que esta identificación no es ninguna panacea, y que la asimilación de los objetos matemáticos con conjuntos no revela la verdadera naturaleza de dichos objetos, sino que simplemente proporciona sustitutos teórico-conjuntistas satisfactorios. Por todo ello, tiene sentido preguntarse si semejante reducción reporta algunos beneficios. A juicio de Maddy (1997, p. 26), esos beneficios habrá que incardinárselos en el ámbito de la matemática más que en el de la filosofía. De entrada, la fuerza de la fundamentación teórico-conjuntista se basa en el hecho de que permite un referente único en el que investigar las relaciones existentes entre los distintos objetos matemáticos. Es decir, proporciona sustitutos de objetos matemáticos e instancias de estructuras matemáticas en una arena común (el universo de los conjuntos), lo que posibilita visualizar e investigar las relaciones e interrelaciones entre ellos. Los axiomas de la TdC presentan, además, una ventaja añadida, puesto que son tan amplios y generales que no se limitan a la mera reproducción de las matemáticas existentes, sino que permiten obtener, también, poderosas consecuencias en los distintos campos en los que tal reducción se lleva a cabo. Por último, esta arena unificada para todas las matemáticas se perfila como una corte de apelación final en un doble frente. Por una parte, permite responder a cuestiones existenciales: si se quiere determinar si hay un objeto matemático de una determinada clase, bastará con cuestionarse si existe un sustituto teórico-conjuntista alternativo. Además, si lo que se quiere es determinar si un enunciado concreto es o no un teorema, bastará con determinar si lo es respecto a la TdC en que se incardina la teoría matemática en cuestión.

La idea de que la TdC constituye un fundamento para toda la matemática puede decirse que surgió con la propia teoría, pero también desde sus inicios han abundado las dificultades. La más popular de todas, y la que más ha influído en la reciente filosofía de las matemáticas ha sido la formulada por Benacerraf, que ha puesto de manifiesto las complicaciones que trae consigo la mera identificación de los números naturales con determinados conjuntos. En última instancia, puede que haya razones de tipo técnico para preferir la propuesta de Zermelo o la de Von Neumann, pero en modo alguno han de encontrarse argumentos metafísicos que describan la naturaleza última y profunda de los números naturales.

Como alternativa, cabría pensar que la naturaleza de esta reducción sea de tipo ontológico a la Quine. La idea está justificada, puesto que —en paralelo con la ciencia— se limitaría al máximo la introducción de nuevas entidades, obviando así todos los problemas que generan las entidades abstractas. Por todo ello, puede decirse para el caso de los conjuntos, que diferentes versiones de la teoría proporcionan en última instancia una reducción ontológica, esto es, que permiten reemplazar un mundo que contiene números, funciones,... y conjuntos, por un universo constituido únicamente por conjuntos. Esta reduc-
ción es excesivamente restrictiva, según entiende Maddy, puesto que no es ése el talante desde el que se trata la cuestión en las discusiones de fundamentos de la matemática (1997, p. 25). En lugar de eso, acepta un criterio de identificación en unos términos que, a mi juicio, complican más la cuestión.

La fuente, en este caso, es Moschovakis, quien trata de dar un significado preciso a la ‘identificación’ habitualmente admitida entre los puntos de la línea geométrica y el conjunto de los números reales. En este caso concreto, más que identificación, lo que se da, a juicio de Moschovakis, es una representación que nos permite establecer definiciones aritméticas para todas las nociones geométricas útiles, y estudiar las propiedades matemáticas de la línea ‘como si’ los puntos fueran números reales. Moschovakis cree factible extender esta analogía al caso de los conjuntos y llega a afirmar que, en el universo de los conjuntos se descubre una representación de todos los objetos matemáticos que necesitamos, de manera que puede desarrollarse cualquier aspecto de la teoría ‘como si’ todos los objetos matemáticos fuese conjuntos. En esta línea discurre el planteamiento de Maddy: ‘el trabajo de la fundamentación teórico-conjuntista consiste en aislar las características matemáticamente relevantes de un objeto matemático y encontrar un sucedáneo teórico-conjuntista con esas características.’ (1997, p. 26).

La razón última de que, pese a estas insuficiencias metafísico-ontológicas, la fundamentación teórico-conjuntista continúe teniendo éxito y aceptación entre los matemáticos, es que «la matemática se encuentra profundamente unificada por esta aproximación.» (Maddy 1997, p. 28). Y aunque esta consensuada unificación no tiene pretensiones excluyentes, sino que es más bien modesta, ello no le impide alcanzar ciertas compensaciones acceptables desde un punto de vista metodológico. Aún más, gran parte de las ventajas de tal reducción pueden mantenerse sin necesidad de añadir fuertes o controvertidas tesis adicionales. Como observa Maddy, ‘se puede mantener que la unificación proporcionada por la teoría de conjuntos es válida desde el punto de vista matemático pese a la falta de una prueba de consistencia para toda la matemática’ (ibid., p. 30). Hasta el resultado de Gödel de 1931, el asunto de la prueba de consistencia fue objeto de interés y discusión por parte de lógicos y matemáticos. Como es conocido, Hilbert lo incluyó en su ya famosa nómina, y Zermelo simplemente aludió a él en su primer trabajo sobre axiomatización. Los planteamientos posteriores pusieron de manifiesto que había que continuar avanzando, pese a la permanente amenaza de inconsistencia, y así ocurrió. Es obvio

que cabe cuestionar la validez que pueda tener una fundamentación como la teórico-conjunctiva que no se encuentre respaldada por una prueba de consistencia, pero Maddy sale al paso: «los beneficios matemáticos proporcionados por los fundamentos teórico-conjuntistas no dependen de que se haya probado la consistencia de la teoría de conjuntos» (ibid.). Más bien, cabría considerarla como un desiderátum, como una aspiración a la que toda teoría formalizada tiende.

La idea que persigue es algo más modesta y se trata en este caso de estudiar las consecuencias que trae consigo adoptar una fundamentación teórico-conjunctiva que no exija que las matemáticas estén exentas de contradicción. No cabe apelar a la consistencia relativa de la TdC y las teorías representadas en ella, puesto que el problema no haría sino desplazarse, al descargar la consistencia de un sistema en otro de cuya consistencia tampoco se tiene certeza. Es lo que Quine califica como obscum per obscurius, refiriéndose al intento de fundamentar la aritmética en la TdC (1969, p. 63). Pero este reproche no alcanza al planteamiento de Maddy, cuya pretensión –ya se ha dicho– es más modesta: «esta crítica sólo tendría fuerza si nuestra fundamentación pretendiera establecer lo que fundamenta con un más alto grado de certeza», (1997, p. 30) pero no es éste el caso. Esta idea de que fundamentar una teoría consiste en basarla en algo más cierto que ella ya fue rechazada incluso por Russell, y aunque la interpretación realista de Gödel va en esta línea, también ha sido criticada. Como advierte Tiles (1989, p. 208), sería circular justificar los fundamentos lógicos apelando a sus consecuencias lógicas.

De todos modos, la posición naturalista que va a defender Maddy se entiende mejor desde la reciente discusión Mathias-McLane acerca de la conveniencia de la reducción a que nos estamos refiriendo2. En líneas generales, la fundamentación no es del todo irrazonable en términos ontológicos, según Mathias, pero MacLane se opone a ella porque considera el método teórico-conjunctista opresivo. Para éste último no puede exigirse semejante uniformidad a la matemática, que posee un carácter marcadamente proteico. Pero Mathias no plantea el asunto de forma tan radical. Hay que admitir que matemáticos de distintas ramas tienen también distintos modos de pensar, y que si los problemas se resuelven, es precisamente por esta diversificación metodológica. Es

2 MacLane (1992) considera excesivo el universo conjuntista. A su juicio, un modesto sistema como ZBQC (Zermelo with bounded quantification and choice) es suficiente para satisfacer todas las necesidades de los matemáticos. Según Mathias (1992), rechazar que la TdC proporcione un modo universal de pensamiento y existencia matemática no exige necesariamente declarar inútil la teoría en su totalidad. Por otra parte, no está de más recordar aquí que MacLane es, junto a Eilenberg, padre de la teoría de las categorías, que se presenta, hoy por hoy, como la más clara alternativa a la fundamentación teórico-conjuntista.
decir, Mathias defiende una cierta unidad, que no ha de ser confundida con una no deseable uniformidad. En este aspecto, Maddy se aviene al planteamiento de Mathias: «decir que todos los objetos de estudio matemático tienen trasuntos en la teoría de conjuntos no es decir que deberían ser estudiados usando sólo los métodos teórico-conjuntistas.» (1997, p. 34). Ésta es la misma objeción que hace Mathias a MacLane: «el propósito del trabajo fundacional en matemáticas es promover la unidad [como opuesta a uniformidad] de las matemáticas.» (1992, p. 114). En resumidas cuentas, como afirma Maddy «la fundamentación teórico-conjuntista puede hacer su trabajo sin insistir en que todos los métodos legítimos estén incluidos en los métodos usuales de la teoría de conjuntos.» (1997, p. 34).

En la explicación de su nuevo punto de vista, Maddy se adhiere a este modesto planteamiento y supondrá que la TdC proporciona una fundamentación en los términos aquí expresados, a saber, que «para todos los objetos y estructuras matemáticas hay sustitutos e instanciaciones en Teoría de Conjuntos, y que las versiones teórico-conjuntistas de todos los teoremas de la matemática clásica pueden probarse a partir de los axiomas estándar de ZFC.» (1997, p. 34). Y no hay más. Semejante suposición no incluye teoría alguna acerca de la identidad real de los objetos matemáticos, ni tampoco pretende afirmar que se hayan fundamentado las matemáticas en algo probado como exento de contradicción, o simplemente más cierto; tampoco acepta la afirmación de que se ha reducido la ontología, o de que todos los métodos matemáticos puedan reemplazarse por los métodos teórico-conjuntistas, etcétera. A lo que sí aspira esta reducción es a representar un destacado papel unificador en base al cual estructuras vagas se vuelvan más precisas o se den nuevas pruebas para viejos teoremas, correlacionándose con otros resultados completamente distintos en apariencia. Por otra parte, que la TdC juega este papel es central en la moderna matemática, y este hecho es quizá el resultado más destacable de la investigación sobre fundamentos.

III. UN POCO DE HISTORIA

Conviene en este punto realizar un breve excursus histórico, puesto que, aunque los tópicos que se van a comentar son de sobra conocidos, es preciso recordarlos para poner de manifiesto el distinto talante con el que se ha llevado a cabo la ampliación de los diversos sistemas axiomáticos en TdC. Como se sabe, el primero de ellos fue publicado por Zermelo en 1908 con el título «Inversiones en los fundamentos de la Teoría de Conjuntos». Algunas de las críticas vertidas a este sistema, tales como la relativa al concepto de propiedad bien definida o la que hace referencia a la plataforma ontológica sobre la que se apoyó Zermelo, podrían considerarse de tipo metodológico, y han sido ya
suficientemente estudiadas, por lo que no voy a insistir más en ellas. Lo que sí quiero considerar son ciertos aspectos técnicos inherentes al propio sistema, y que ponen de manifiesto sus debilidades. Así, por ejemplo, se da el caso de que, tal como se ha establecido originalmente, el sistema posibilita menos de lo que se desea, al tiempo que permite más de lo que se quiere. En efecto, por lo que hace a sus propios límites, se constata que en su interior no es demostrable la existencia de un conjunto formado, por ejemplo, por \(N, P(N), P(P(N)), \) etcétera. Este hecho se subsana si se incluye como axioma adicional la suposición de que la imagen funcional de un conjunto sea también un conjunto. Y eso fue precisamente lo que hizo Skolem en 1922, al añadir el que se denominaría axioma de reemplazamiento. Pero, al mismo tiempo y como ya se ha dicho, el sistema permite la aparición de cadenas infinitamente descendentes de conjuntos respecto a la relación de pertenencia. Aunque Fraenkel ideó varios métodos para evitar tales conjuntos no deseados, sería al final Von Neumann en 1940 quien acertaría con la solución al introducir el axioma de fundamentación, que establece –en formulación simplificada de Zermelo– que todo conjunto no vacío posee un subconjunto suyo disjunto con él.

Quiero apresurarme a indicar que estos dos axiomas fueron aceptados por la comunidad matemática sin mucha discusión, al entenderse como extensiones ‘naturales’ del sistema original de Zermelo. Es decir, pese a los avatares del axioma de elección y a las insuficiencias del sistema en sus inicios, superadas por Skolem y Von Neumann en los términos indicados, la aceptación de la ampliación del sistema no fue en modo alguno traumática. Pero este talante no aparece, y el panorama cambia drásticamente, cuando se trata de extender el sistema ZFC. Es precisamente esta asimetría la que posibilitará una discusión filosófica al estilo que Maddy propone y que constituye el núcleo de este trabajo.

Los problemas surgieron ya en el estadio ingenuo de la teoría, con los intentos de determinar el estatus de lo que posteriormente se constatarían como cuestiones independientes. A decir verdad, podría decirse que estas cuestiones son inherentes al propio sistema, puesto que tan pronto como en 1878, Cantor había formulado, e intentado demostrar, quizá la más famosa de todas ellas, la hipótesis del continuo (CH)\(^3\). Para ser precisos, habría que indicar que el calificativo de ‘hipótesis’ no se corresponde con la intención inicial de Cantor, que

\(^3\) AC (axioma de elección), CH y GCH (hipótesis generalizada del continuo) son las más conocidas de estas cuestiones independientes y a ellas nos vamos a ceñir en este trabajo, pero no son las únicas. Están, por ejemplo, algunas cuestiones de la denominada teoría descriptiva de conjuntos, o el llamado ‘problema de Whitehead’, en el ámbito de la teoría abstracta (Cf. P. Maddy 1997, pp. 66 ss.).
la consideraba más bien un teorema, que podría demostrarse a partir del resto
de los axiomas, si es que esto puede decirse así, ya que como se sabe, Cantor
no trabajó explícitamente con axiomas.

Como es de sobra conocido, el camino hacia la prueba de independencia
lo inicia Gödel en 1940 con la demostración de la consistencia relativa de GCH
y de AC respecto del sistema ZF. Lo que viene a probar Gödel es que si ZF es
consistentes, también lo es el sistema que resulta al añadirle GCH y AC, es
decir, que si al incluir estos axiomas en el sistema resultara una inconsistencia,
se debería a que el sistema original ya era inconsistente. En su demostración,
Gödel siguió en parte el camino elegido por Von Neumann para demostrar la
consistencia del axioma de regularidad respecto de los otros axiomas de la
teoría. Decimos en parte porque procede, al igual que Von Neumann, construyendo
un modelo interno, y demostrando que la consistencia se conserva al
añadir los axiomas en cuestión. Pero lo que no admite es la plataforma base,
digamos, sobre la que Von Neumann trabaja. En efecto, éste había introducido
una estratificación jerárquica e iterativa en la que cada conjunto estaría incluido
en un determinado nivel, y cada nivel abarcaría a todos los anteriores. El
paso de un nivel a otro supondría introducir el conjunto potencia del nivel
inferior, un salto gigantesco que Gödel no admite. Dicho de otro modo, el
problema que se plantea es el de construir el conjunto de las partes de un
conjunto para el caso de que ese conjunto sea infinito. La solución de Gödel
consistirá en delimitar esta posibilidad, no a todos los conjuntos, sino sólo a aqüél-
los que podamos efectivamente construir. De esta manera, L(α+1) ya no será
P(L(α)), sino que estará formado por aquellos conjuntos efectivamente definibles
a partir de L(α).

La idea de Gödel, como señala Drake (1974, p. 127) es introducir una
variante en el esquema de Von Neumann que proporcione un modelo de ZF tal
que, en vez de considerar todo subconjunto del nivel inmediatamente anterior,
tome en cada paso sólo los conjuntos que podamos definir o construir. Dicho
de otra manera, para establecer su modelo interno, Gödel restringir el universo
de los conjuntos a aquellos que son constructibles. Esta hipótesis, que Gödel
introduce lacónicamente como proposición A, es el denominado axioma de
destructibilidad, cuya formulación habitual es V=L.5 En definitiva, la estrate-

4 Aunque efectivamente, Cantor se mueve en lo que Mosterín ha denominado “estadio
ingenio” de la teoría de conjuntos, una lectura atenta muestra que utilizó, sin explicitarlo, varios
principios que constituyen el germen de futuros axiomas. (Cf. P. Suppes 1960, p. 4). Por otra
parte, la trascendencia matemática de estos hechos reclamaron la atención de Hilbert, quien
situó CH como el primer problema de su lista.

5 L representa los conjuntos constructibles (la ‘L’ por law), y V representa la clase de
todos los conjuntos. Así, el axioma afirma que todos los conjuntos son constructibles.
gie de Gödel consiste en demostrar, en primer lugar, que si ZF es consistente, entonces también lo es el sistema que resulta al añadirle V=L; y a partir de ahí establecer que el sistema (ZF + (V=L)) implica tanto AC como GCH (Cf. S. Feferman 1998, pp. 67 ss.).

No cabe duda de que estas pruebas fortalecieron la idea de la independencia de AC y de CGH respecto del resto de los axiomas, pero faltaba probar la consistencia respecto a sus negaciones, y —pese a los esfuerzos de Gödel en este sentido— hubo que esperar más de veinte años para que el problema quedara resuelto en su totalidad. Como se sabe, en 1963, Cohen logró consiguiendo utilizar una técnica en cierto modo antitética a la empleada por Gödel. En lugar de restringir los conjuntos que constituyen el modelo a utilizar con objeto de obtener sólo conjuntos constructibles, Cohen extiende tal modelo mediante la adopción de conjuntos "genéricos", de tal manera que, por ejemplo, añadiendo, a N, una cantidad suficiente de tales conjuntos, se podría construir un modelo de ZFC que contradijera CH, es decir un modelo en el que \(2^\aleph_0 \neq \aleph-2\). Este proceder de Cohen, conocido como método del ‘forcing’ constituye en la actualidad una línea de investigación en orden a extender el sistema ZFC.

El desarrollo posterior de la TdC es un asunto demasiado complejo como para ser siquiera esbozado en un trabajo como éste. Por ello, en lo que sigue, sólo introduciré sucintamente los elementos a los que alude directamente nuestra autora en su planteamiento.

IV. LA APROXIMACIÓN NATURALISTA DE MADDY

La posición de Maddy se inserta en una especial atención a la práctica matemática y a la consiguiente metodología empleada por el matemático en su quehacer diario. Como ha advertido en reiteradas ocasiones, su interés no se centra, al menos de modo exclusivo, en planteamientos estrictamente filosóficos que resulten ajenos al matemático. Lo que persigue es delimitar temas convergentes en los que ambos, filósofos y matemáticos, puedan intercambiar opiniones, desde sus respectivos ámbitos. Así, algunos asuntos como el cuestionamiento del uso de la lógica clásica en matemáticas, al modo que lo hacen los intuicionistas no interesan a la mayor parte de los matemáticos. Pero hay, en cambio, otros muchos temas en los que los intereses de ambos convergen, tal como ocurre con el estatus de los enunciados independientes en TdC. Esta coincidencia de intereses es enriquecedora, puesto que se generan toda una

6 Otros dos caminos frecuentados en la actual investigación en TdC corresponden a los grandes cardinales y a los desarrollos combinatorios, originados a partir del teorema de Ramsey (En el Boletín Informativo número 20 de la SLMPCE Joan Bagaria esboza un esquema de la situación en que se encuentra la reciente TdC).
serie de cuestiones que permiten amplios desarrollos del proyecto inicial. Así, a partir de esta idea matriz surgen otros asuntos que exigen explicación, como puede ser el caso de la determinación de criterios que guíen la búsqueda de nuevos axiomas, o la justificación de una TdC alternativa. Maddy se centra, lo repite varias veces (1996, p. 490), en cómo justificar la aceptación de teorías en TdC que no estén sustentadas mediante demostraciones. En particular, su atención se dirige, tanto a los axiomas que convendría introducir, como al estatus de los enunciados independientes.

Pero antes de aceptar sin más una afirmación sobre la conveniencia de adoptar un axioma determinado se debería delimitar el contenido de tal afirmación. Hay dos respuestas a esta cuestión previa, según Maddy (1996, pp. 490 ss.). Una de ellas la proporcional el realismo, o sea, la afirmación de que la TdC describe y estudia los conjuntos y sus relaciones, del mismo modo que los astrónomos, por ejemplo, describen y estudian los astros y las estrellas. En nuestro ámbito, la visión paradigmática de este planteamiento (que Maddy defendió en su 1990) es la establecida por Gödel, basada en una fuerte analogía entre matemáticas y ciencia. No cabe duda de que la aproximación realista posee algunas incuestionables ventajas; así proporciona una buena explicación de lo que decimos al hacer aseveraciones en TdC, puesto que, en última instancia, lo que se afirma es que tal o cual enunciado es (o no) verdadero en el universo conjuntista. Como ventaja añadida, el realismo permite demarcar métodos de justificación legítimos, puesto que, desde este punto de vista, justificar una afirmación sobre TdC es en definitiva proporcionar buena evidencia de que lo que se dice es verdadero en ese mundo.

La otra respuesta en lo referente al contenido de las afirmaciones en TdC la proporcionala, según Maddy, una visión del formalismo que no ha de confundirse con la hilbertiana y que ella denomina glib formalism. La idea es que, desde esta perspectiva, cualquier teoría consistente es tan buena como otra, con lo cual, toda extensión consistente de ZFC ofrece sus razones para ser aceptada. Según esto, no hay argumentos de naturaleza puramente matemática para elegir una teoría determinada. Por todo lo cual, las razones que harían preferible una teoría sobre otra son ajenas a la matemática, y habría que incardinarlas en el ámbito del psicológico o de lo estético. En resumidas

Aunque creo entender la idea de Maddy al denominarlo así, no encuentro una traducción satisfactoria del término "glib", que hace referencia a algo insustancial o simplista. Por ello, nombraré el término con la expresión que utiliza nuestra autora. En otro orden de cosas, no deja de ser curioso que Maddy incluya el formalismo como un intento de proporcionar una explicación acerca del contenido de los enunciados matemáticos. Lo tradicional es considerarlo ajeno a este ámbito (Cf. H. Curry 1974, Introducción).

Maddy cita a Von Neumann (1947) para avalar su idea, pero creo que la elección no es muy afortunada. El contexto en el que se sitúa el lógico húngaro no atañe tanto a la posibilidad
cuentas, el glib formalism suplanta sin más la analogía realista entre matemáticas y ciencia por una nueva analogía entre matemáticas y arte. Pero este planteamiento no puede dejar satisfechos a los que se esfuerzan por establecer que las cuestiones abiertas en TeC son de naturaleza matemática, y que la decisión para elegir entre teorías alternativas no puede resolverse en una mera cuestión de gusto. Como advierte Maddy, los que se toman el problema en serio, «aquéllos que sostienen que las cuestiones abiertas son cuestiones matemáticas legítimas esperan que las soluciones estén motivadas por consideraciones matemáticas objetivas, no por preferencias estéticas subjetivas.» (1996, p. 491).

Entre ambas aproximaciones, Maddy prefiere la realista, como ya puso de manifiesto en su 1990, pero si bien el argumento realista tiene sus méritos, resulta demasiado débil para hacer justicia a la situación actual respecto a V=L (1997, pp. 130-132). En concreto, la mayor parte de los teórico-conjuntistas coinciden en calificar al axioma, cuando menos, de sospechoso por su carácter restrictivo, pero, pese a todo, continúa planteándose como alternativa. Esta idea se entiende mejor si se tiene en cuenta que es inconsistente con la existencia de diversos conjuntos no constructibles.9 Fue precisamente el intento de extender el argumento contra V=L desde esta nueva perspectiva, lo que condujo a Maddy a dudar de su anterior posición realista. En última instancia, pueden hallarse razones para pensar que, si bien es cierto que el realismo proporciona un marco más adecuado que el formalismo para justificar la metodología utilizada por el matemático en sus investigaciones, deja algunos aspectos sin explicación convincente. A su juicio, el naturalismo que adopta como alternativa, «evita las distorsiones del realismo sin descender al encogimiento de hombros del formalismo.» (1996, p. 491). Pero hasta llegar a esa solución simplificadora hay un largo camino por recorrer, camino que le llevará a replantearse la postura aceptada en su 1990, y que supone una nueva lectura de los textos de Gódel y Quine, en los que se apoyó para defenderla.

Junto al fuerte contenido realista que aparece en Gódel, considerado ya como estándar en los manuales, hay otra línea de pensamiento que parece des-

9 Maddy analiza con cierto detalle la introducción de V=HOD como alternativa a V=L. HOD es la clase de los conjuntos hereditariamente definibles en términos de ordinales y representa una variante de la jerarquía constructible, ya sugerida por el propio Gódel, con idea de proporcionar otra prueba de la consistencia de AC. V=HOD presenta algunas ventajas sobre V=L que lo hacen preferible por los conjuntistas, entre ellas la consistencia respecto a otros axiomas ampliamente aceptados como el de la existencia de cardinales medibles (MC) (Cf. Drake 1974 pp. 166 ss., también P. Maddy 1997 pp.130-131).
prendese de un análisis más atento de algunos de sus textos. A través de esta nueva lectura, Gödel no parece estar defendiendo una posición filosófica de la naturaleza de las matemáticas basada en la analogía con la ciencia empírica, sino que parece esgrimir argumentos fundamentados sobre consideraciones acerca de la práctica matemática. A estas conclusiones llega Maddy tras analizar varios textos godelianos en los que esta circunstancia se pone particularmente de manifiesto. Quizá uno de los más significativos sea el pasaje en el que Gödel discute la introducción por parte de Russell del principio del círculo vicioso, con objeto de evitar las paradojas. Como es conocido, Gödel encuentra en su análisis hasta tres formulaciones diferentes del principio en Russell. Una de ellas, quizá la más utilizada, afirma que ninguna totalidad puede contener elementos definibles únicamente en términos de dicha totalidad. Así formulado, el principio, asegura Gödel, no es satisfecho en el formalismo de la matemática clásica, dado que la axiomática supone la existencia de números reales definidos sólo en función de todo el cuerpo R. Según esto, se trataría de elegir entre el principio del círculo vicioso y el formalismo de la matemática clásica. A este respecto, Gödel es claro: «prefiero considerar esto como una prueba de que el principio es falso que como una prueba de que la matemática clásica es falsa.» (1981, p. 308). Según Maddy, la conclusión a la que parece llegar Gödel, pero que no explicita, es que «el principio es falso porque no permite la derivación de la matemática clásica.» (1996, p. 496). Así se pone de manifiesto que, para Gödel, las consideraciones decisivas relevantes son internas a las matemáticas, y no meramente filosóficas. Todo parece, pues, sugerir que la fuente de justificación para la existencia de objetos matemáticos se basa en la práctica ordinaria de las matemáticas, y no en experiencias no bien definidas, o en unos data no precisados, o inclusive en una analogía no especificada entre matemáticas y ciencia empírica.

En definitiva, si la argumentación de Maddy es correcta, entonces Gödel no está desarrollando un argumento filosófico sobre la naturaleza de las matemáticas basándose en la mera analogía con la ciencia, sino que su interés se centra en la práctica real de las matemáticas. Al mismo tiempo, es consciente de las críticas a que puede verse sometida con esta segunda visión que presenta de Gödel, pero cree que proporciona una perspectiva útil que en cierta medida supera la visión ofrecida como estándar. Así pues, tal como parece desprenderse de esta interpretación la analogía matemáticas-ciencia, que sustentaba el punto de vista godeliano, queda en parte desdibujada por el énfasis manifiesto en la práctica. Pero si continuamos atendiendo al planteamiento de nuestra autora, hay otras razones que avalan el resquebrajamiento de la citada analogía y que han de buscarse en algunos argumentos básicos de Quine. Quisiera determinar en dos de ellos. En primer lugar, en el distinto talante que matemáticos y científicos muestran a la hora de establecer sus teorías, y en segundo lugar,
en la diferente concepción de la verdad en cada uno de los ámbitos, lo que obligará a una revisión de la tesis de indispensabilidad.

Respecto al primero cabría decir que el asunto está en que la debilitación de la analogía se produce en parte porque la naturaleza del establecimiento de principios en cada uno de ellas es diferente. En concreto, mientras que el científico parece recortar al máximo su ontología proponiendo sólo aquellas entidades imprescindibles sin las cuales no puede dar cuenta de sus observaciones, la propensión del teórico conjuntista es proponer tantas entidades como le sea posible. Este contraste se encuentra bien explicado en Quine, para quien «parece natural seguir la misma máxima que habitualmente siguen los científicos naturales al concebir nuevas hipótesis, a saber, simplicidad: economía de estructura y ontología.» (1998, p. 69). Incluso llega a definirse respecto a $V=L$ y acepta su introducción aduciendo que «corta las alas a las partes más elevadas de la Teoría de Conjuntos, evitando así sus vuelos más gratuitos.» (1990, p. 144). Todas estas simplificaciones, concluye Quine, son análogas a las que introduce el científico, y cuya aspiración última no es sino afinar y hacer más eficiente nuestro sistema global del mundo. Es decir, al igual que en el ámbito de la ciencia natural, recomienda economizar, y así prefiere $V=L$, en tanto que los teórico-conjuntistas lo rechazan por su cicatería ontológica.

Esta es una de las razones por las que Maddy abandona el realismo, pero —como se ha dicho— no es la única. De entrada, habría que decir que el talante con el que el teórico-conjuntista y el realista se aproximan al problema de la verdad es diferente. Así, los primeros pueden dar razones atractivas (como de hecho lo hacen) desde un punto de vista matemático para añadir al sistema ZFC, el axioma MC en lugar de $V=L$. Pero esas razones no dejan sin respuesta al realista, que podría argumentar a su vez que si todos los conjuntos son constructibles, o sea si $V=L$ es verdadero, entonces $\{ZFC+MC\}$, aunque sea una teoría muy bonita, es simplemente falsa. Es decir, desde una visión realista del asunto, el practicante teórico-conjuntista está obligado a mostrar evidencia, no tanto de las virtudes de la teoría, como de que es verdadera en el mundo real de los conjuntos. A juicio de Maddy, esta respuesta del realista parece fuera de lugar respecto a la práctica real en el ámbito de la TdC (Cf. 1996, pp. 494 ss.). Aunque Maddy reconoce que éstos no puedan considerarse argumentos precisos contra el realismo, fueron estos razonamientos los que la llevaron a dudar y a someter a revisión la tesis de indispensabilidad.

El argumento es ya popular y ha sido ampliamente discutido. La objeción que ahora presenta Maddy no hace sino añadir una nueva razón para que la disputa se mantenga, y en lo que sigue sólo pergeñará los motivos que la llevan a rechazarlo, puesto que la profundización en el asunto merecería un tratamiento más extenso que no tiene cabida en un trabajo como éste. En resumidas cuentas, la tesis de indispensabilidad descansa en el holismo, es decir, en la
afirmación de que la confirmación de una teoría científica avala la totalidad de dicha teoría, incluyendo las matemáticas que se han utilizado para su desarrollo. Pero según Maddy, este esquema contradice, tanto el sentir, como el proceder de los científicos en su quehacer habitual. De hecho, ellos, los científicos niegan a veces que la fuerza confirmatoria de los resultados experimentales pueda extenderse a todas las partes de una teoría exitosa, incluidas las matemáticas. Si el argumento fuese cierto, y los científicos creyeron verdaderamente que la teoría se confirma o se refuta en su totalidad, debería advertirse en ellos un comportamiento más cuidadoso a la hora de introducir, no sólo las matemáticas, sino también las ficciones útiles que conforman sus teorías. Pero la realidad es muy otra. Los científicos se muestran más bien pragmáticos en este sentido y apelan a razones de utilidad para justificar los objetos que integran sus teorías. La confirmación repetida de una teoría no puede, pues, tomarse como evidencia de que las matemáticas empleadas sean verdaderas. Por ejemplo, si, como han sugerido algunos especialistas en mecánica cuántica, la estructura espacio-temporal es discreta, entonces toda la teoría matemática del continuo, incluido el cálculo, podría encontrarse de pronto sin posibilidad de aplicación en física. De este modo, si se aceptara el argumento de indispensabilidad, debería verse a los teórico-conjuntistas particularmente atentos al desarrollo de la mecánica cuántica, con objeto de responder algunas de las cuestiones abiertas en su área. Como, evidentemente, no es esto lo que ocurre, el defensor de la indispensabilidad debería sentirse obligado a proponer profundas revisiones en la metodología matemática. Pero no es esto lo que sucede, según Maddy: «las vicisitudes de las matemáticas aplicadas no parecen afectar a la metodología de las matemáticas de la manera que lo harían si las aplicaciones fueran de hecho los árbitros de la ontología matemática» (1997, p. 159). Tal y como ha mostrado en repetidas ocasiones, no está por enmendarle la plana, metodológicamente hablando, a los matemáticos; por consiguiente, no puede mantener el argumento en los términos en los que lo hizo en 1990.

Con estos presupuestos, estima Maddy que el naturalismo está en condiciones de dar una respuesta más adecuada a todas estas cuestiones que la ofrecida por el realismo y el formalismo. En última instancia, su propuesta se va a centrar en «saber si las cuestiones abiertas en Teoría de Conjuntos deberían verse como legítimas cuestiones matemáticas o no» (1996 p. 502); dicho de otra manera, se trata de determinar si existe o no un tribunal superior, una filosofía primera a la que someter la metodología matemática. No cabe duda de que los otros dos movimientos, en especial el realismo, también tienen respuesta a estas cuestiones, pero su solución se presenta desde una perspectiva que Maddy no acepta: «cuando se persiguen cuestiones metodológicas hay que olvidar el filosofar extra matemático y hay que atender a consideraciones matemáticas internas» (1996, p. 502). Así pues, esta posición maddyana no se
presenta al mismo nivel filosófico que las otras dos alternativas, sino que es más bien una afirmación metafilosófica acerca de la relación entre matemáticas y filosofía, o sea, acerca de los métodos por los que habría que justificar, extender o criticar la práctica existente. El principio central es que «la filosofía extra matemática juega un papel inspirativo, y no justificativo» (ibid., p. 502). Por eso no es satisfactoria la respuesta realista, porque si bien puede inspirar al teórico-conjuntista a suponer, por ejemplo, que una cuestión de independencia es un problema legítimo que tiene que ser resuelto, se muestra incapaz de justificar semejante confianza. Es decir «ningún argumento filosófico debería persuadir al matemático al abandono de las matemáticas sin una fuerte justificación interna» (ibid., p. 503).

Maddy se apresura a indicar que esto no supone arrojar la filosofía a las llamas, dado que podría jugar un relevante papel desde el punto de vista heurístico. Lo que afirma simplemente es que quien se interese por la metodología teórico-conjuntista, quien pretenda conocer cómo los métodos empleados en ese ámbito pueden ser justificados y extendidos, está obligado a atender los detalles de la práctica (Cf. 1996, p. 503). Es conocido, por otra parte, que la matemática se entremezcla con otras ciencias de una manera tan estrecha que es preciso admitir interacciones en ambos sentidos. Por ello, podría darse el caso de que determinados progresos en un área no esencialmente matemática de la ciencia exigiera algún tipo de reforma en la práctica matemática. Maddy es consciente de esta situación y, como naturalista, se ve obligada a admitirla, pero al tiempo parece aceptar implícitamente una máxima de mutilación mínima en la práctica y la metodología, puesto que resulta dudoso que una reacción razonable a un conflicto de este tipo pase necesariamente por la revisión de métodos matemáticos que han mostrado ser poderosamente efectivos.

El naturalismo que Maddy defiende se encuentra mediatisado, como en su momento pensó que lo estaba el realismo, por máximas metodológicas. Este hecho se pone particularmente de manifiesto en el caso que nos ocupa, pero con objeto de justificarlo es preciso retomar, desde una nueva perspectiva, el carácter fundacional que, con desigual grado de aceptación, se atribuye a la TdC. De entrada, un teórico-conjuntista puede adoptar esta fundamentación sin tener en cuenta que haya otra teoría alternativa como fundamentación, o bien que otros matemáticos, en otras ramas, la rechacen.

Cualquiera que sea el caso, aceptar esta fundamentación, o sea, proporcionar un sistema simple en el que todos los objetos y estructuras matemáticas puedan ser instanciados, exige, a modo de consecuencia metodológica, el dar

\[10\] Maddy defendió la existencia de máximas metodológicas de este tipo también en su etapa realista. En aquella circunstancia apeló a lo que podríamos denominar ‘definicionismo’ y ‘combinacionismo’ (Véase P. Maddy 1993).
una teoría simple y fundamental de conjunto. Dicho de otro modo, no se puede pretender que la TdC proporcione una fundamentación para toda la matemática si no se ofrece un criterio más o menos unánime para determinar lo que sea un conjunto. Por eso están justificados quienes objeten que sí hay una multiplicidad de TdC entonces ninguna de ellas puede pretender ocupar un lugar central en las matemáticas. En esta misma línea incide MacLane, aunque no es el único: «los resultados de independencia llevan a que ‘conjunto’ tiene muchos significados, y por tanto se tambalea la pretendida fundamentación de la matemática en la Teoría de Conuntos.» (1986, p. 359). Todo esto induce a Maddy a propugnar la existencia de una máxima metodológica, que los matemáticos utilizan sin explícitación, y que les lleva a unificar (UNIFY), o al menos, a tratar de unificar el concepto de conjunto que ha de ser tenido en cuenta. La evidencia de la máxima se pone particularmente de manifiesto si se invierte el razonamiento. En efecto, si los practicantes teórico-conjuntistas no estuviesen motivados por una máxima unificadora de este tipo, entonces no se sentirían presionados para establecer la verdad de CH, o para decidir cuestiones abiertas en la teoría descriptiva de conjuntos, o para elegir entre nuevos axiomas candidatos. Bastaría considerar sin más –como en cierto modo mantiene el glib formalism– una multitud de alternativas, todas ellas igualmente válidas.

Pero esta máxima UNIFY no es la única que gobierna el desarrollo de la TdC, y en última instancia, todo el proceder de los matemáticos, según entiende Maddy. El afán metodológico unificador que propone dicho principio no debe acarrear como gabela menoscabo alguno en el ámbito creativo. Es decir, que se impone una nueva máxima que suponga para el matemático el menor número de restricciones posibles. Maddy acude a la historia para encontrar una fundamentación adecuada con objeto de introducir un segundo principio metodológico, el de maximización (MAXIMIZE). En este caso concreto, se circumscribe al periodo en torno a finales del XVIII, en el que matemáticas y ciencia física estaban muy conectadas, hasta el extremo de que conceptos tan técnicos como derivada y función eran reclamados por fenómenos reales y servían para describirlos (Cf. Kline 1972, p. 1355). Dicho de otro modo, el desarrollo de las matemáticas estaba guiado por las necesidades de la ciencia. Como señala Kline, esta situación cambió drásticamente al siglo siguiente cuando «gradual e inconscientemente los matemáticos comenzaron a introducir conceptos que tenían poco o ningún significado físico directo.» (ibid., pp. 1035-1036). Es decir, los matemáticos se sintieron libres para investigar y elegir su propio camino, al liberarse de las ataduras de la ciencia.\footnote{Para algunos, la matemática se convierte en un instrumento poderoso precisamente cuando se libera de las ataduras que la ligan a la realidad. Según Stone (1961), supuso una auténtica revolución el descubrimiento de que las matemáticas son totalmente independientes}.
de libertad para elegir el propio camino no deben interpretarse, tal como hace el *glib formalism*, en el sentido de que cualquier teoría matemática ofrece idéntico aliciente, y por tanto puede considerarse objeto de estudio. Más bien, la consecuencia que debe extraerse de todo esto, según nuestra autora, es que el interés de los matemáticos por estudiar unas teorías u otras obedece a criterios puramente matemáticos, o sea, que es independiente de los resultados científicos que puedan producirse como consecuencia de esa dedicación (1997, p. 210). Por consiguiente, si las matemáticas son libres en el sentido anterior, y si la TdC se va a considerar como fundamento, entonces no debería imponerse restricciones a sí misma; es decir, la arena en la que se modelaría la matemática, o sea, la TdC, debería ser tan generosa como fuera posible. Todas estas características deberían trasladarse asimismo a los axiomas elegidos. En resumen, el objetivo de fundamentar la matemática sin contrapartida genera la admonición metodológica de maximizar.

Pero los problemas no concluyen con la mera recomendación metodológica de esas dos máximas, puesto que no son independientes entre sí. De hecho, hay una cierta tensión entre ambas, como se pone de manifiesto al intentar decidir entre las alternativas V=L y CH. El principio MAXIMIZE aconsejaría adoptar las dos y utilizar cada una de ellas en la situación según convenga, pero, al mismo tiempo, UNIFY desaconseja semejante metodología. La dificultad surge cuando se intentan aplicar simultáneamente. En este caso, apunta Maddy, hay dos situaciones distintas, según el principio de que se trate. Así, compatibilizar ambas máximas resulta mucho más difícil en el caso de CH que en el de V=L. Pero hay que indicar que en otros casos la situación podría ser diferente (Cf 1997, p. 211). Así pues, la preocupación metodológicamente relevante que subyace en el teórico-conjuntista es que no sea posible utilizar ambas máximas simultáneamente. De este modo puede darse, por ejemplo, que ZFC se extienda en un determinado número de caminos incompatibles entre sí, cada uno de los cuales suponga diferentes consecuencias sobre el tamaño del continuo y, al mismo tiempo, que ninguna consideración matemática nos permita escoger entre ellos. Si así fuera, la presión para aceptar MAXIMIZE obligaría a la comunidad a sacrificar UNIFY, esto es, a admitir un rango de teorías con distintos valores para el tamaño del continuo.

Uno de los hechos fácilmente constatables en la historia de la TdC es que, en ocasiones, ha sido posible armonizar ambas máximas, unificando al tiempo que se maximiza. Es lo que ocurre, por ejemplo, con las generosas teorías de los grandes cardinales, o con las restrictivas que incluyen V=L. Pero, como
observa Maddy (1996, p. 512), no hay garantía de que esto vaya a continuar ocurriendo así. Es posible que en algún momento no puedan reconciliarse, y que la comunidad teórico-conjuntista se vea obligada a elegir entre ellas, posiblemente con la ayuda de otras máximas.

REFERENCIAS

Antonio Caba Sánchez es profesor asociado de Lógica y Filosofía de la Ciencia en la Universidad de Málaga. Es autor de La filosofía de la aritmética en Rudolf Carnap (Málaga: Universidad de Málaga, 1993), así como de diversos artículos sobre filosofía y metodología de las matemáticas.

Dirección postal: Departamento de Filosofía. Universidad de Málaga, Facultad de Filosofía y Letras, Campus de Teatinos, E-29071, Málaga.

E-mail: acab1@uma.es.