Design of an Aquaponic System Run on Solar Power for a Family Business in Chad

Authors

DOI:

https://doi.org/10.24310/ejfbejfb.v9i1.5220

Keywords:

Aquoponic, Aquaculture, Hydroponics, Integrated system, Solar power, Chad

Abstract

This article describes the design of a single-family aquaponic system powered by solar energy. This technique called “aquaponics” is an activity that blends aquaculture (farming aquatic species) and hydroponics (growing plants in a water-based environment) into one integrated system. A description is given of the elements in the aquaponic circuit, which is sized to scale for a family business, in addition to the budget required for its implementation in Chad. The use of renewable energy offers the possibility of implementing sustainable farming in underdeveloped countries. The objective of this system is to maximize the production of fish and vegetables, taking into account their limitations (20 kg of fish can be produced for every 1,000 liters of water while 8 liters of water are necessary to grow each plant). The fish farmed in this case will be tilapia, as it is technically feasible and has a flavor that is acceptable to the inhabitants of Chad. The cultivated plants include all types of fruits and vegetables, as well as aromatic plants.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Álvarez Torres, P. (1999). Desarrollo de la acuacultura en México y perspectivas de la acuacultura rural.

Bañuelos Jaúregui, J.R. (2017). Acuaponía: parámetros básicos de diseño. Monografía. Torreón, Coahuila. Universidad Antonio Narro. México.

Bakiu, R., Shehu, J. (2014). Aquaponic system as excellent agricultural research instruments in Albania. Albanian Journal of Agricultural Sciences, 385.

Bender, J. (1984). An integrated system of aquaculture, vegetable production and solar heating in an urban environment. Aquacultural Engineering, III(2), 141-152.

Bijo, P. A., Thorarensen, H., Johannsson, R., Jensson, P. (2007). Feasibility study of a recirculation aquaculture system.

Boutwell, J. (2007). Aztecs aquaponics revamped. Napa Valley Register.

Burgoon, P.S., Baum, C. (1984). Year-round fish and vegetable production in a poassive solar greenhouse. Paper presented at the Sixth international congress on soilless culture, Lunteren, Holanda.

Caló, P. (2011). Introducción a la acuaponía. Centro Nacional de Desarrollo acuícola (CENADAC). Ministerio de Agricultura, Ganadería y Pesca. Argentina.

Candarle, P. (2015). Técnicas de acuponía, Centro Nacional de Desarrollo agrícola, (CENADAC), Dirección de acuicultura.

Clarkson, R., Lane, S.D. (1991). Use of small-scale nutrient film hydroponic technique to reduce mineral accumulation in aquarium water. Aquaculture and fisheries management, XXII, 37-45.

Connolly, K.T., T. (2010). Optimization of a backyard aquaponics. BREE 495, Design 3, Bioresource Engineering, Faculty of Agricultural and Environmental Sciences – McGill University.

Costa-Pierce, B.A. (1998). Preliminary investigation of an integrated aquaculture- wetland ecosystem using tertiary-treated municipal wastewater in Los Angeles Country, California.

Diver, S. (2006a). Aquaponics-Integration of hydroponics with aquaculture: Attra.

Diver, S. (2006b). Aquaponics-Integration of hydroponics with aquaculture: Attra – National Sustainable Agriculture Information Service.

Duning, R. D., Losordo, Thomas M and Hobbs, Alex O. (2012). A Spreadsheet Tool for the Economic Analysis of a Recirculation Tank System: Southern Regional Aquaculture Center.

Gómez M., R.C., Ortega L., N.E., Trejo R., L.I. (2015). La acuoponía: Alternativa sustentable y potencial para producción de alimentos en México. Agroproductividad. 8(3), 60-65.

Guterstam, B. (1996). Demostrating ecological engineering for wasterwater treatment in a Nordic climate using aquaculture principles in a greenhouse mesocosm. Ecological Engineerign, VI, 73-97.

Hochheimer, J.N. Wheaton, F. (1998). Biological filters: trickling and RBC design. Paper presented at the Proceedings of the Second International Conference on Recirculating Aquaculture, Roanoke, VA.

Iturbide D, K. (2008). Caracterización de los efluentes de dos sistemas de producción de tilapia y el posible uso de plantas como agentes de biorremediación. Universidad de San Carlos de Guatemala.

Jchapell, J. A; Brown, T. W y Purcell, T. 2008. A demonstration of tilapia and tomato cultureutilizing an energy efficient integrated system approach. 8th International Symposium o Tilapia in Aquaculture 2008. pp 23-32

Jensen, M.H., Collins, W.L., (1985). Hydroponic vegetable production. Hort. Rev. 7:483-558.

Lewis, V. M, Yopp, J.H, Scharamm, H.L, Brandenburg, A.M. (1978). Use of hydroponics to maintain.

López Jaime, J. 2016. Manual de Acuaponía, cultivo sostenible de peces y plantas. Málaga: Aula del Mar.

Losordo, T. (1999). Recirculating Aquaculture Tank Production System: A Review of Component Options: Southern Regional Aquaculture Center.

McLarney, W. (1972). Irrigation of garden vegetables with fertile fish pond water. New Alchemy Agricultural Research Report (2).

McMurtry, M.R, Sanders, D.C., Nelson, P. V. (1993). Mineral nutrient concentration and uptake by tomato irrigated with recirculating aquaculture water as influenced by quantity of fish waste products supplied. Journal of Plant Nutrition, XVI(3), 407-409.

McMurtry, M.R, Sanders, D.C, Cure, J.D, Hodson, R.G, Haning, B.C, St. Amand, P.C. 1997. Efficiency of water use of an integrated fish/vegetable co-culture system. J World Aquacult Soc 28:420–428.

Masser, M.P, Rakocy, J.E y Losordo, T.M. 1999 Recirculating aquaculture tank production systems: management of recirculating systems. Southern Regional Aquaculture Centre Publication No. 452. Southern Regional Aquaculture Centre, USA.

Naegel, L. C. A. (1977). Combined production of fish and plants in. Aquaculture, X(1), 17-24.

Rakocy, J.E., (1984). A recirculating system for tilpia culture and vegetable hydroponics. In: R.C. Smitherman and D. Tave (Eds.), Proceedings of the Auburn Symposium on Fisheries and Aquiaculture, Auburn University, Auburn AL., pp.103-114.

Rakocy, J.E., Nair, A. (1987). Integrating fish culture and vegetable hydroponics: Problems and prospects. Virgin Islands Perspect, 19-23.

Rakocy, J.E. (1989). Hydroponic lettuce production in a recirculating fish culture system. Univ. Virgin Island Agric. Esp. Station, Island perspectives 3, 4-20.

Rakocy, J. E., Hargreaves, J.A., Bailey, D.S. (1989). Effects of hydroponic vegetable production on water quality in a closed recirculating system. J. World aquat. Soc., XX(1), 64A.

Rakocy, J.E., Hargreaves, J. A., Bailey, D.S. 1993. Nutrient accumulation in a recirculating aquaculture system integrated with vegetable hydroponic production. In: J.-K. Wang, Ed. Techniques for Modern Aquaculture. American Society of Agricultural Engineers, St. Joseph, MI, pp 148-158.

Rakocy, J.E., D.S. Bailey, K.A. Shultz and W.M. Cole. 1997. Evaluation of a commercial scale aquaponic unit for the production of tilapia and lettuce. Pages 357-372 in K. Fitzsimmons, ed. Tilapia Aquaculture: Proceedings of the Fourth International Symposium on Tilapia in Aquaculture, Orlando, Florida.

Rakocy, J.E, Shultz, R.C, Bailey, D.S. y Thoman, E.S. 2004. Aquaponic production of tilapia and basil: comparing a batch and staggered cropping system. Acta Horticulturae (ISHS) 648:63 69.47.

Rakocy, J.E, Masser, M.P y Losordo, T.M. 2006. Recirculating Aquaculture Tank Production Systems: Aquaponics—Integrating Fish and Plant Culture. Southern Regional Aquaculture Centre Publication No. 454. Southern Regional Aquaculture Centre, USA.

Ramirez Ballesteros, M. (2013). Evaluación del crecimiento de tilapia, acocil y lechuga en un Sistema de recirculación acuapónico en condiciones de laboratorio. Universidad Autónoma de México.

Ramos, C. (2006). Aquaponics Guadalajara. Aquaponics Journal., 40, 12-13

Range, P. Range B. (2005). Aquaponics helps to feed students, staff at orphanage in Reynosa, México. Aquaponics Journal., 39, 18-19.

Rennet, B (1989). The possibility of combined fish and vegetable production in greenhouse. Advanced Fish Science., 19-27.

Resh, H.M., 1995. Hydroponic food production: a definitive guidebook of soilless food-growing methods. Woodbridge Press Publishing Company, Santa Barbara, CA.

Sanders, D., McMurty, M.R. (1988). Fish increase greenhouse profits. American Vegetable Grower, 32-33.

Somerville, C.; Cohen, M.; Pantanella, E.; Stankus, A. & Lovatelli, A. 2014. Small-scale Aquaponic Food Production. Integrated Fish and Plant Farming. FAO Fisheries and Aquaculture Technical Paper No. 589. Roma, FAO. 262 p.

Thomas M. Losordo, Michael P. Masser y James Rakocy. 1998. Recirculating Aquaculture Tank Production Systems: An Overview of Critical Considerations. Southern Regional Aquaculture Centre Publication No. 451. Southern Regional Aquaculture Centre, USA.

Wolfe, J., Zweig, R. (1977). Summary of fish culture techniques in solar aquatic ponds. Journal of the New Alchemist.

Zuckerman, B.M., M. Bess Dicklow, G.C.C., L Roberto (1989). Suppression of plant parasitic nematodes in the chinampa agricultural soils. Chemical Ecology, XV(6).

Downloads

Published

2019-07-01

How to Cite

Tous-Zamora, D., De-la-Rosa-Sánchez, F., Sánchez-Teba, E. M. ., Cordero-Tous, M., & Ruiz-Campos, R. (2019). Design of an Aquaponic System Run on Solar Power for a Family Business in Chad. European Journal of Family Business, 9(1), 39–48. https://doi.org/10.24310/ejfbejfb.v9i1.5220

Issue

Section

Research paper (SI)