Contributing to solving a one-dimensional cutting stock problema with two objectives based on the generation of cutting patterns

Autores/as

  • Boualem Slimi Bilda University Algeria
  • Moncef Abbas Université des Sciences et Technologies Houari Boumadian Algeria

DOI:

https://doi.org/10.24310/recta.23.1.2022.19865

Palabras clave:

Trim loss, setups, feasible cutting pattern, feasible cutting plan, cutting stock problem with two-objectives.

Resumen

In the classic versions of the cutting stock problem, the aim is to find a solution to cut a main object into several parts commonly called pieces, in order to minimize the total trim loss of the raw material. Many studies have addressed this type of problem. However, in real-world applications there are usually constraints that make the problem shape different from the classic version and make it more difficult to solve. In this article we propose a technique to solve the one-dimensional cutting stock problem with two-objectives, where one seeks to minimize at the same time the total trim loss of the raw material and numbers of setups to be carried out. This technique is constituted of two stages whose first consists in generating all the feasible cutting patterns and the second allows to build cutting planes, satisfying the demands, thanks to a subset of these patterns. These different cutting plans represent all of the feasible solutions, each of which is characterized by a number of setups and total quantity of falls.

Descargas

Los datos de descargas todavía no están disponibles.

Publicación Facts

Metric
Este artículo
Otros artículos
Revisión pares 
2.4 promedio

Perfil de revisores  N/D

Información adicional autores

Información adicional autores
Este artículo
Otros artículos
Datos de investigación disponibles 
##plugins.generic.pfl.dataAvailability.unsupported##
##plugins.generic.pfl.averagePercentYes##
Financiación 
N/D
32% con financiadores
Conflicto de intereses 
N/D
##plugins.generic.pfl.averagePercentYes##
Metric
Para esta revista
Otras revistas
Artículos aceptados 
Artículos aceptados: 4%
33% aceptado
Días hasta la publicación 
Días hasta la publicación
145

Indexado: {$indexList}

    Indexado en
Perfil de director y equipo editorial
##plugins.generic.pfl.profiles##
Sociedad Académica/Grupo 
N/D
Editora: 
UMA Editorial. Universidad de Málaga

Citas

Aliano Filho, A., Moretti, A. C., Pato, M. V. & Oliveira, W. A. (2017). A comparative study of exact methods for the biobjective integer one-dimensional cutting stock problem, Journal of the Operational Research, 69(1), 91-107.

https://doi.org/10.1057/s41274-017-0214-7

Arbel, A. (1993). Large-scale optimization methods applied to the cutting stock problem of irregular shapes. The International Journal of Production Research, 31(2), 483-500.

https://doi.org/10.1080/00207549308956738

Araujo, S., Poldi, K. C. & Smith. J. (2014). A genetic algorithm for the one-dimensional cutting stock problem with Setups. Pesquisa Operacional, 34(2): 165-187.

https://doi.org/10.1590/0101-7438.2014.034.02.0165

Campello, S. C., Ghidini, C. T., Ayres, A. O. C. & Oliveira. W. A. (2020). A multi- objective integrated model for lot sizing and cutting stock problems, Journal of the Operational Research Society, 71: 9, 1466-1478.

https://doi.org/10.1080/01605682.2019.1619892

Cui, Y. & Yang, Y. (2010). A heuristic for the one-dimensional cutting stock problem with usable leftover. European Journal of Operational Research, 204(2), 245-250.

https://doi.org/10.1016/j.ejor.2009.10.028

Cui, Y., Zhong, C. & Yao, Y (2015). Pattern-set generation algorithm for the one-dimensional cutting stock problem with setup cost, European Journal of Operational Research, 243(2).

https://doi.org/10.1016/j.ejor.2014.12.015

Diegel, A., Montocchio, E., Walters, E., Schalkwyk, S. & Naidoo. S. (1996). Setup minimizing condition in the trim loss problem. European Journal of Operational Research, 95, 631-640.23, 483-493.

https://doi.org/10.1016/0377-2217(95)00303-7

Delorme, M., Iori, M. & Martello, S., (2016). Bin packing and cutting stock problems: Mathematical models and exact algorithms. European Journal of Operational Research, 255 (1), 1-20.

https://doi.org/10.1016/j.ejor.2016.04.030

Ehrgott, M. & Gandibleux, X. (2000). A survey and annotated bibliography of multi-objective combinatorial optimization. Operational Research Spektrum, 22, 425-460.

https://doi.org/10.1007/s002910000046

Farley, A. A. (1988). Mathematical programming models for cutting-stock problems in the clothing industry. Journal of the Operational Research Society, 39(1), 41-53.

https://doi.org/10.1057/jors.1988.6

Filho, A. A., Moretti, A. C. & Pato, M. V. (2018). A comparative study of exact methods for the biobjective integer one-dimensional cutting stock problem. Journal of the Operational Research Society, 69(1), 91-107.

https://doi.org/10.1057/s41274-017-0214-7

Gilmore, P. C. & Gomory, R. E. (1961). A Linear programming approach to the cutting stock problem. Operations Research, 9, 849-859.

https://doi.org/10.1287/opre.9.6.849

Gilmore, P. C. & Gomory, R. E. (1963). A linear programming approach to the cutting stock problem Part II. Operations Research, 11 (6), 863-888.

https://doi.org/10.1287/opre.11.6.863

Gilmore, P. C. & Gomory, R .E. (1965). Multistage cutting stock problems of two and more dimensions. Operations Research., 13 (1), 94-120.

https://doi.org/10.1287/opre.13.1.94

Golfeto, R., Moretti, A. C. & Salles-Neto. L. L. (2009b). A genetic symbiotic algorithm applied to the cutting- stock problem with multiple objectives. Advanced, Modeling and Optimization, 11, 473-501.

Haessler, R. W. (1975). Controlling cutting pattern changes in one-dimensional trim Problems, Operations Research. 23, 483-493.

https://doi.org/10.1287/opre.23.3.483

Haessler, R. W. (1980). A Note on computational modifications to the Gilmore -Gomory cutting stock problem. Operations Research, 28, 1001-1005.

https://doi.org/10.1287/opre.28.4.1001

Kolen, A. W. J. & Spieksma, F. C. R. (2000). Solving a bi-criterion cutting stock problem with openended demand: a case study. Journal of The Operational Research Society, 51, 1238-1247.

https://doi.org/10.1057/palgrave.jors.2601023

Lee, J. (2007). In situ column generation for a cutting-stock problem. Computers & Operations Research, 34, Issue 8, 2345-2358.

https://doi.org/10.1016/j.cor.2005.09.007

Martinovic, J., Scheithauer, G. & Valério de Carvalho, J. M. (2018). A comparative study of the arc flow model and the one-cut model for one-dimensional cutting stock problems, European Journal of Operational Research, 266 (2), 458-471.

https://doi.org/10.1016/j.ejor.2017.10.008

Pazand, K. & Mohammadi. A. (2009). Extended haessler heuristic algorithm for cutting stock problem: a case study in film Industry. Australian Journal of Basic and Applied Sciences, 3(4): 3944-3953, ISSN 1991-8178.

Salles-Neto, L. L., Rufiàn-Lizana, A. M., Arana-Jimenez & Ruiz-Garzon. G. (2010). Weak efficiency in Cutting-stock problem, Congresso nacional de matemática aplicada e computational, 33. v. 3, p. 652-658. ISSN 1984-820X.

Suliman, S. M. (2001). Pattern generating procedure for the cutting stock problem. International Journal of Production Economics, 74(1-3), 293-301.

https://doi.org/10.1016/S0925-5273(01)00134-7

Tanir, D., Ugurlu, O., Guler, A. & Nuriyev, U. (2019). One-dimensional cutting stock problem with divisible items: a case study in steel industry, TWMS Journal of Applied and Engineering Mathematics, V.9, N.3, 2019. 473- 484.

Umetani, S., Yagiura, M. & Ibaraki, T. (2003). An LP-based local search to the one-dimensional cutting stock problem using a given number of cutting patterns. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E86- A, 1093-1102.

Wäscher, G. & Henn, S. (2013). Extensions of cutting problems, setups. Pesquisa Operational, Vol 33 (2). 133-162.

https://doi.org/10.1590/S0101-74382013000200001

Descargas

Publicado

2022-06-30

Cómo citar

Slimi, B., & Abbas, M. (2022). Contributing to solving a one-dimensional cutting stock problema with two objectives based on the generation of cutting patterns. Revista Electrónica De Comunicaciones Y Trabajos De ASEPUMA, 23(1), 1–22. https://doi.org/10.24310/recta.23.1.2022.19865