Movimiento de una partícula en una piscina de acuicultura mediante una ecuación diferencial estocástica de Langevin basada en MCMC

Authors

  • Jonathan Proao Universidad T´ecnica de Manabí Ecuador
  • Luis Sánchez Universidad T´ecnica de Manabí Ecuador
  • Osvaldo Fosado Universidad T´ecnica de Manabí Ecuador

DOI:

https://doi.org/10.24310/recta.22.1.2021.19871

Keywords:

Tecnolog´ıa Biofloc, Producci´on Acu´ıcola, Modelo Langevin, Algoritmo Metropolis-Hastings

Abstract

The movement of a particle in the water is known that is developed within an aquatic production pool with biofloc technology, that is vital importance, that is known by the incidence in the total costs of those production systems, in addition, the environmental effects has had by the used water in the system. In this work, a Langevin model is proposed to describe the movement of the particles that are driven by air currents. An algorithm of Monte Carlo techniques by Markov Chains is used, specifically, the Metropolis-Hasting is developed to reconstruct the states of the non-linear dynamic system that is sensitive to the initial conditions. The data is obtained from a scale experiment, the proposed methodology is shown that the methodology adequately describes those movements, cyclical patterns in short periods of time are presented. The efficiency of prediction of the model is checked that is reproduced from the estimated states with the real data. Finally, a goodness of fit measure is proposed to assess the quality of 21 22 Proao, J. S´anchez, L. y Fosado, O. the estimate, insignificant errors are obtained.

Downloads

Download data is not yet available.

Publication Facts

Metric
This article
Other articles
Peer reviewers 
0
2.4

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
N/A
32%
Competing interests 
N/A
11%
Metric
This journal
Other journals
Articles accepted 
4%
33%
Days to publication 
1056
145

Indexed in

Editor & editorial board
profiles
Academic society 
N/A
Publisher 
UMA Editorial. Universidad de Málaga

References

Andrew, C. (1990). Forecasting structural time series models and the kalman filter. Cambridge University Press.

Azim, M. and Little, D. (2008). The biofloc technology (bft) in indoor tanks: Water quality biofloc composition and growth and welfare of nile tilapia (oreochromis niloticus). Aquaculture, 283(4):29-35.

https://doi.org/10.1016/j.aquaculture.2008.06.036

Bittanti, S. and Savaresi, S. (2000). On the parameterization and design of an extended kalman fillter. IEEE Transactions on Automatic Control., 45:1718-1724.

https://doi.org/10.1109/9.880631

Bossier, P. and Ekasari, J. (2017). Biofloc technology application in aquaculture to support sustainable development goals. Microbial Biotechnology., 10(5):1012-1016.

https://doi.org/10.1111/1751-7915.12836

Botha, I., Kohn, R., and Drovandi, C. (2021). Particle methods for stochastic differential equation mixed effects models. Bayesian Analysis, 16(2):575-609.

https://doi.org/10.1214/20-BA1216

Browdy, C., Bratvold, D., Stokes, A., and McIntosh, R. (2001). Perspectives on the application of closed shrimp culture systems in: The rising tide. Proceedings of the Special Session on Sustainable Shrimp. Farming World Aquaculture Society., 1:20-34.

Brown, D. (2008). Sharing video experiments with tracker digital libraries. AAPT 2008 Summer Meeting. Edmonton Poster PST3-15.

Chaverra, S., Garc'ıa, J., and Pardo, S. (2017). Efectos del biofloc sobre los par'ametros de crecimiento de juveniles de cachama blanca piaractus brachypomus. Rev. CES Med Zootec., 12(3):170-180.

https://doi.org/10.21615/cesmvz.12.3.1

Chen, Z., Wong, A., Cheng, T., Koon, A., and Chan, H. (2019). Fipoq/fbxo33, a cullin-1-based ubiquitin ligase complex component modulates ubiquitination and solubility of polyglutamine disease protein. J. Neurochem., pages 781-798.

https://doi.org/10.1111/jnc.14669

Chib, S., Pitt, M., and Shephard, N. (2006). Likelihood based inference for difusion driven state space models. Working paper. Oxford: Nudeld College.

Chopin, N. and Papaspiliopoulos, O. (2020). An introduction to sequential monte carlo. Springer Series in Statistics. ISBN 978-3-030-47844-5. Switzerland.

https://doi.org/10.1007/978-3-030-47845-2_13

Chui, C. and Chen, G. (2009). Kalman filtering with real-time applications. Springer Ser. Info.Sci. Fourth Edition. Springer. Berlin. Heidelberg.

Coffey, W., Kalmykov, Y., and Waldron, J. (2004). The langevin equation: with applications to stochastic problems in physics chemistry and electrical engineering. World Scientific., 14.

https://doi.org/10.1142/5343

Crisan, D. and Doucet, A. (2002). A survey of convergence results on particle filtering methods for practitioners. IEEE Transactions on Signal Processing., 50:736-746.

https://doi.org/10.1109/78.984773

Doucet, A., Freitas, J. D., and Gordon, N. (2000). Sequential monte carlo in practice. Springer Verlag. New York.

https://doi.org/10.1007/978-1-4757-3437-9

Fleckenstein, L., Tierney, T., and Ray, A. (2018). Comparing biofloc clear-water and hybrid recirculating nursery systems (part ii): Tilapia (oreochromis niloticus) production and water quality dynamics. Aquac Eng., 82:80-85.

https://doi.org/10.1016/j.aquaeng.2018.06.006

Hastings, W. (1970). Monte carlo sampling methods using markov chains and their applications. Biometrika, 57:97-109.

https://doi.org/10.1093/biomet/57.1.97

Ibarra, E., Carratal'a, S., and Proao, J. (2015). Determinacin del 'Indice de importancia relativa en oreochromis sp. cultivadas con biofloc y alimento balanceado. La T'ecnica, 14(2):62-71.

https://doi.org/10.33936/la_tecnica.v0i14.583

Ibarra, E., Llanes, J., Jij'on, A., and Rodr'ıguez, B. (2020). Incremento de la densidad poblacional en el engorde de camarn (litopenaeus vannamei) con tecnologa biofloc y baja proteína dietética. Rev. AquaCUBA., 20(2):30-40.

Infante, S., Hern'andez, A., Ordonez, A., and S'anchez, L. (2017). Inference for stochastic differential equations models using filtering algorithms. Revista Ingenieria UC., 24(3):383-399.

Ionides, E. (2003). Inference and filtering for partially observed diffusion processes via sequential monte carlo. Tech. report. Univ. of Michigan Dept. of Statistics., (402).

Ito, K. and Xiong, K. (2000). Gaussian filters for nonlinear filtering problems. IEEE Transactions on Automatic Control., 45(5):910-927.

https://doi.org/10.1109/9.855552

Kong, A., Liu, S., and Wong, H. (1994). Sequential imputations and bayesian missing data problems. Journal of the American Statistical Association., 89:278-288.

https://doi.org/10.1080/01621459.1994.10476469

Krummenauer, D., Peixoto, S., Cavalli, R., Poersch, L., and Wasielesky, W. (2011). Superintensive culture of white shrimp litopenaeus vannamei in a biofloc technology system in southern brazil at different stocking. J. World Aquac Soc., 42(5):726-733.

https://doi.org/10.1111/j.1749-7345.2011.00507.x

Lazkano, E., Sierra, B., Astigarraga, A., and Martínez, J. (2007). On the use of bayesian networks to develop behaviours for mobile robots. Robotics and Autonomous Systems., 53(3):253265.

https://doi.org/10.1016/j.robot.2006.08.003

Martínez, L., Martínez, M., Emerenciano, M., Miranda, B., and Gollas-Galván, T. (2016). From microbes to fish the next revolution in food production. Crit Rev Biotechnol., 37(3):87-295.

https://doi.org/10.3109/07388551.2016.1144043

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., and Teller, E. (1953). Equations of state calculations by fast computing machines. J. Chem. Phys., 21:1087-1091.

https://doi.org/10.2172/4390578

Ming, Z., Shi, R., Guo, Y., Han, D., and Liu, H. (2016). Applications of computational fluid dynamics to modeling hydrodynamics in tilapia rearing tank of recirculating biofloc technology system. Aquacultural Engineering., 74:120-130.

https://doi.org/10.1016/j.aquaeng.2016.07.005

Mustafa, G., Ibrahim, A., and Elahwany, A. (2009). Modeling of activated sludge floc characteristics. American Journal of Environmental Sciences., 5:69-79.

https://doi.org/10.3844/ajes.2009.69.79

Nuñez-Torres, O. (2017). Los costos de la alimentaci'on en la producci'on pecuaria. J.Selva Andina Anim. Sci., 4(2):93-94.

https://doi.org/10.36610/j.jsaas.2017.040200093

Proao, J. (2020). Validaci'on del modelo a escala para observar el movimiento del agua de una piscina de produccin acu'ıcola con biofloc. Techinal report. Facultad de Ciencias Veterinarias. Universidad Técnica de Manabí.

Sánchez, L., Infante, S., Grifien, V., and Rey, D. (2016). Spatio temporal dynamic model and parallelized ensemble kalman filter for precipitation data. Brazilian Journal of Probability and Statistics., 30(4):63-675.

https://doi.org/10.1214/15-BJPS297

Säkkä, S. and Solin, A. (2014). Lecture notes on applied stochastic differential equations. Version as of December., (4).

Souza, R., Lima, E., Melo, F., Ferreira, M., and Correia, E. (2019). The culture of nile tilapia at different salinities using a biofloc system. Revista Ciencia Agronómica., 50.

https://doi.org/10.5935/1806-6690.20190031

Stefano, M. (2008). Simulation and inference for stochastic differential equations. With R examples. Springer-Verlag. New York.

Tong, D. (2012). Kinetic theory. Preprint typeset in JHEP style - HYPER VERSION. Department of Applied Mathematics and Theoretical Physics. Centre for Mathematical Sciences. Cambridge. UK,.

Published

2021-06-30

How to Cite

Proao, J., Sánchez, L., & Fosado, O. (2021). Movimiento de una partícula en una piscina de acuicultura mediante una ecuación diferencial estocástica de Langevin basada en MCMC. Revista Electrónica De Comunicaciones Y Trabajos De ASEPUMA, 22(1), 21–33. https://doi.org/10.24310/recta.22.1.2021.19871