On the dynamic stability of the Cournot duopoly solution under bounded rationality
DOI:
https://doi.org/10.24310/recta.22.1.2021.19873Palabras clave:
Nonlinear duopoly, expectations, Cournot-Nash equilibrium, dynamic stabilityResumen
La mayoría de los modelos de oligopolio descritos en la literatura analizan los procesos dinámicos y la estabilidad del equilibrio de Nash mediante la introducción de especificaciones concretas para las funciones de demanda y de costes. Este trabajo analiza la estabilidad dinámica del equilibrio de Cournot-Nash en el contexto de un duopolio utilizando funciones generales para describir tanto la demanda como los costes. Se concluye que la condición que garantiza la estabilidad del equilibrio de Nash bajo el proceso de ajuste implícito en el modelo original de Cournot es un requisito clave en la estabilidad dinámica del equilibrio de Cournot-Nash independientemente del esquema de expectativas de las empresas. Además, esta condición es más decisiva cuanto mayor sea el grado de racionalidad de las empresas.
Descargas
Publicación Facts
Perfil de revisores N/D
Información adicional autores
Indexado: {$indexList}
-
Indexado en
- Sociedad Académica/Grupo
- N/D
- Editora:
- UMA Editorial. Universidad de Málaga
Citas
Agiza, H. N. (1998) Explicit stability zones for Cournot games with 3 and 4 competitors, Chaos, Solitons and Fractals 9, 1955-1966.
https://doi.org/10.1016/S0960-0779(98)00006-X
Agiza, H. N. (1999) On the analysis of stability, bifurcation, chaos and chaos control of Kopel map, Chaos, Solitons and Fractals 10(11), 1909-1916.
https://doi.org/10.1016/S0960-0779(98)00210-0
Andaluz J. & Jarne, G. (2016) Stability of vertically differentiated Cournot and Bertrand-type models when firms are boundedly rational, Annals of Operations Research 238, 1-25.
https://doi.org/10.1007/s10479-015-2057-4
Andaluz, J., Elsadany, A.A. & Jarne, G. (2020) Dynamic Cournot oligopoly game based on general isoelastc demand, Nonlinear Dynamics 99(2), 1053-1063.
https://doi.org/10.1007/s11071-019-05333-7
Askar, S.S. (2020). Asymmetric information on price can affect Bertrand duopoly players with gradientbased mechanism, Mathematical Problems in Engineering 5, 1-12.
https://doi.org/10.1155/2020/6620570
Bischi, G. I., Naimzada, A. & Sbragia, L. (2007). Oligopoly games with local monopolistic approximation, Journal of Economic Behavior & Organization 62, 371-388.
https://doi.org/10.1016/j.jebo.2005.08.006
Bischi, G. I., Chiarella, C., Kopel, M. & Szidarovszky, F. (2010). Nonlinear oligopolies: stability and bifurcations. Springer.
https://doi.org/10.1007/978-3-642-02106-0
Bulow, J., Geanakoplos, J. & Kemplerer, P. (1985). Multimarket Oligopoly: Strategic Substitutes and Complements, Journal of Political Economy 93(3), 488-511.
https://doi.org/10.1086/261312
Corchón, L. & Mas-Colell, A. (1996). On the stability of best reply and gradient systems with applications to imperfectly competitive models, Economics Letters 51(1), 59-65.
https://doi.org/10.1016/0165-1765(95)00752-0
Cournot, A. (1838). Recherches sur les principes mathématiques de la théorie des richesses. Hachette.
Dana, R. A. & Montrucchio, L. (1986). Dynamic complexity in duopoly games, Journal of Economic Theory 40(1), 40-56.
https://doi.org/10.1016/0022-0531(86)90006-2
Dana, R. A. & Montrucchio, L. (1987) On rational dynamic strategies in infinite horizon models where agents discount the future, Journal of Economic Behavior & Organization, 8, 497-511.
https://doi.org/10.1016/0167-2681(87)90057-6
Dixit, A. (1993). Comparative statics in oligopoly, International Economic Review 27(1), 107-122.
https://doi.org/10.2307/2526609
Friedman, J. W. (1977). Oligopoly and the Theory of Games, North Holland.
Gandolfo, G. (2010). Economic dynamics. Springer.
https://doi.org/10.1007/978-3-642-03871-6
Hahn, F. H. (1962). The Stability of Cournot Oligopoly Solution, Review of Economic Studies 29, 329- 331.
https://doi.org/10.2307/2296310
Kopel, M. (1996). Simple and complex adjustment dynamics in Cournot duopoly models, Chaos, Solitons and Fractals 12, 2031-2048.
https://doi.org/10.1016/S0960-0779(96)00070-7
Martin, S. (1993). Advanced Industrial Economics, Blackwell, 1993.
Milgrom, P. & Roberts, J. (1990). Rationalizability, learning and equilibrium in games with strategic complementarities, Econometrica 58, 1255-1277.
https://doi.org/10.2307/2938316
Okuguchi, K. (1964). The Stability of the Cournot Oligopoly Solution: A Further Generalization, The Review of Economic Studies 31(2), 143-146.
https://doi.org/10.2307/2296196
Okuguchi, K. (1976). Expectations and stability in oligopoly models, Springer Science & Business Media, 138
https://doi.org/10.1007/978-3-642-46347-1
Puu, T. (1991). Chaos in duopoly pricing, Chaos, Solitons and Fractals 1, 573-581.
https://doi.org/10.1016/0960-0779(91)90045-B
Tuinstra, J. (2004). A price adjustment process in a model of monopolistic competition, International Game Theory Review 6(3), 417-442.
https://doi.org/10.1142/S0219198904000289
Vives, X. (1990). Nash equilibrium and strategic complementarities, Journal of Mathematical Economics 19, 305-321.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.