Una alimentación sana y sostenible es posible: Diseño de menús personalizados con programación multiobjetivo

Autores/as

DOI:

https://doi.org/10.24310/recta.25.1.2024.20358

Palabras clave:

Dise˜no de Men´us, Modelo combinatorio, Metaheur´ısticas, Palatabilidad, Sostenibilidad, Salud

Resumen

En las últimas décadas, los hábitos de consumo propios de los países europeos han sido reemplazados por alternativas menos saludables. Además, existe una creciente preocupación por definir sistemas alimentarios sostenibles, reflejados en los Objetivos de la Agenda 2030.
En este trabajo, se propone un modelo de optimización multiobjetivo para el diseño de menús individuales, dentro del marco de costumbres españolas. Éstos deben ajustarse a ciertas condiciones saludables (nutricionales y derivadas de la dieta Mediterránea), a la vez que se minimiza el coste y las emisiones de gases de efecto invernadero, tratando de mantenerse lo más similar posible a un menú de partida.
Para resolver este problema combinatorio se aplican estrategias metaheurísticas (GRASP e ILS) que permiten generar una extensa frontera de Pareto. Cada una de las soluciones eficientes que definen esta frontera de Pareto, representa un menú saludable. Además, en este caso concreto, se obtuvieron más de mil menús eficientes, los cuales son alternativas más sostenibles y económicas que el menú de partida.

Descargas

Los datos de descargas todavía no están disponibles.

Publicación Facts

Metric
Este artículo
Otros artículos
Revisión pares 
2.4 promedio

Perfil de revisores  N/D

Información adicional autores

Información adicional autores
Este artículo
Otros artículos
Datos de investigación disponibles 
##plugins.generic.pfl.dataAvailability.unsupported##
##plugins.generic.pfl.averagePercentYes##
Financiación 
N/D
32% con financiadores
Conflicto de intereses 
N/D
##plugins.generic.pfl.averagePercentYes##
Metric
Para esta revista
Otras revistas
Artículos aceptados 
Artículos aceptados: 4%
33% aceptado
Días hasta la publicación 
Días hasta la publicación
145

Indexado: {$indexList}

    Indexado en
Perfil de director y equipo editorial
##plugins.generic.pfl.profiles##
Sociedad Académica/Grupo 
N/D
Editora: 
UMA Editorial. Universidad de Málaga

Citas

Afshin, A., ...., and Masters, W. A. (2021). Cost and affordability of nutritious diets at retail prices: evidence from 177 countries. Food policy, 99:101983.

https://doi.org/10.1016/j.foodpol.2020.101983

Benvenuti, L., De Santis, A., Di Sero, A., and Franco, N. (2019). Concurrent economic and environmental impacts of food consumption: are low emissions diets affordable? Journal of Cleaner Production, 236:117645.

https://doi.org/10.1016/j.jclepro.2019.117645

Cordain, L., Eaton, S. B., Sebastian, A., Mann, N., Lindeberg, S., Watkins, B. A., O'Keefe, J. H., and Brand-Miller, J. (2005). Origins and evolution of the western diet: health implications for the 21st century1,2. The American Journal of Clinical Nutrition, 81(2):341-354. de la Dieta Mediterr'anea, F. (2010). Pir'amide de la dieta mediterr'anea. Leafleet.

https://doi.org/10.1093/ajcn.81.2.341

Donati, M., Menozzi, D., Zighetti, C., Rosi, A., Zinetti, A., and Scazzina, F. (2016). Towards a sustainable diet combining economic, environmental and nutritional objectives. Appetite, 106:48-57.

https://doi.org/10.1016/j.appet.2016.02.151

Dorward, A. (2013). Agricultural labour productivity, food prices and sustainable development impacts and indicators. Food Policy, 39:40-50.

https://doi.org/10.1016/j.foodpol.2012.12.003

Drewnowski, A. (2010). The nutrient rich foods index helps to identify healthy, affordable foods. The American Journal of Clinical Nutrition, 91(4):S1095-S1101.

https://doi.org/10.3945/ajcn.2010.28450D

Duckworth, J. J., Randle, M., McGale, L. S., Jones, A., Doherty, B., Halford, J. C., and Christiansen, P. (2022). Do front-of-pack 'green labels' increase sustainable food choice and willingnessto-pay in U.K. consumers? Journal of Cleaner Production, 371:133466.

https://doi.org/10.1016/j.jclepro.2022.133466

Färe, R., Grosskopf, S., and Margaritis, D. (2011). The diet problem and dea. Journal of the Operational Research Society, 62(7):1420-1422.

https://doi.org/10.1057/jors.2010.113

Gazan, R., Brouzes, C. M. C., Vieux, F., Maillot, M., Lluch, A., and Darmon, N. (2018). Mathematical optimization to explore tomorrow's sustainable diets: A narrative review. Advances in Nutrition, 9(5):602-616.

https://doi.org/10.1093/advances/nmy049

Goldreich, O. (2010). P, NP, and NP-Completeness: The basics of computational complexity. Cambridge University Press.

https://doi.org/10.1017/CBO9780511761355

Gustafson, D. I., Decker, E. A., Drewnowski, A., Hamm, M. W., Hwang, J., and Merrigan, K. A. (2022). Making healthy, sustainable diets accessible and achievable: A new framework for assessing the nutrition, environmental, and equity impacts of packaged foods. Current Developments in Nutrition, 6(10):6010012.

https://doi.org/10.1093/cdn/nzac136

Haigh, L., Kirk, C., El Gendy, K., Gallacher, J., Errington, L., Mathers, J. C., and Anstee, Q. M. (2022). The effectiveness and acceptability of mediterranean diet and calorie restriction in nonalcoholic fatty liver disease (nafld): A systematic review and meta-analysis. Clinical Nutrition, 41(9):1913-1931.

https://doi.org/10.1016/j.clnu.2022.06.037

Herforth, A., Bai, Y., Venkat, A., Mahrt, K., Ebel, A., and Masters, W. A. (2020). Cost and affordability of healthy diets across and within countries. FAO.

Hernández, M., G'omez, T., Delgado-Antequera, L., and Caballero, R. (2021). Using multiobjective optimization models to establish healthy diets in spain following mediterranean standards. Operational Research, 21:1927-2961.

https://doi.org/10.1007/s12351-019-00499-9

Horgan, G. W., Perrin, A., Whybrow, S., and Macdiarmid, J. I. (2016). Achieving dietary recommendations and reducing greenhouse gas emissions: modelling diets to minimise the change from current intakes. International Journal of Behavioral Nutrition and Physical Activity, 13(1).

https://doi.org/10.1186/s12966-016-0370-1

Johnston, J. L., Fanzo, J. C., and Cogill, B. (2014). Understanding sustainable diets: A descriptive analysis of the determinants and processes that influence diets and their impact on health, food security, and environmental sustainability. Advances in Nutrition, 5(4):418-429.

https://doi.org/10.3945/an.113.005553

Kanellopoulos, A., Gerdessen, J. C., Ivancic, A., Geleijnse, J. M., Bloemhof-Ruwaard, J. M., and van't Veer, P. (2020). Designing healthier and acceptable diets using data envelopment analysis. Public Health Nutrition, 23(13):2290-2302.

https://doi.org/10.1017/S1368980019004774

Lancaster, L. M. (1992). The history of the application of mathematical programming to menu planning. European Journal of Operational Research, 57(3):339-347.

https://doi.org/10.1016/0377-2217(92)90345-A

Leung, P., Wanitprapha, K., and Quinn, L. A. (1995). A recipe-based, diet-planning modelling system. British Journal of Nutrition, 74(2):151-162.

https://doi.org/10.1079/BJN19950119

Lewandowski, A. and Wierzbicki, A. (1989). Aspiration Based Decision Support Systems: Theory, Software and Applications. Lecture Notes in Economics and Mathematical Systems. Springer.

https://doi.org/10.1007/978-3-662-21637-8

Lewis, H. R. (1983). Computers and intractability. a guide to the theory of np-completeness.

Macdiarmid, J. I., Kyle, J., Horgan, G. W., Loe, J., Fyfe, C., Johnstone, A., and McNeill, G. (2012). Sustainable diets for the future: can we contribute to reducing greenhouse gas emissions by eating a healthy diet? The American Journal of Clinical Nutrition, 96(3):632-639.

https://doi.org/10.3945/ajcn.112.038729

Marling, C. R., Petot, G. J., and Sterling, L. S. (1999). Integrating case-based and rule-based reasoning to meet multiple design constraints. Computational Intelligence, 15(3):308-332.

https://doi.org/10.1111/0824-7935.00095

Marrero, A., Segredo, E., Le'on, C., and Segura, C. (2020). A memetic decomposition-based multiobjective evolutionary algorithm applied to a constrained menu planning problem. Mathematics, 8(11):1960.

https://doi.org/10.3390/math8111960

Martos-Barrachina, F., Delgado-Antequera, L., and Hern'andez, M. (2023). A novel cost-palatability bi-objective approach to the menu planning problem using a path relinking algorithm. DESC.

https://doi.org/10.1080/01605682.2024.2326188

Martos-Barrachina, F., Delgado-Antequera, L., Hern'andez, M., and Caballero, R. (2022). An extensive search algorithm to find feasible healthy menus for humans. Operational Research an International Journal, 22:5231-5267.

https://doi.org/10.1007/s12351-022-00702-4

Martos-Barrachina, F., Delgado-Antequera, L., Hernandez, M., and Diaz-Hidalgo, R. (2019). Patrones de consumo de alimentos en espan˜a. Rect@, 20(2):95-130.

https://doi.org/10.24309/recta.2019.20.2.01

Marty, L., Chambaron, S., de Lauzon-Guillain, B., and Nicklaus, S. (2022). The motivational roots of sustainable diets: Analysis of food choice motives associated to health, environmental and socio-cultural aspects of diet sustainability in a sample of french adults. Cleaner and Responsible Consumption, 5:100059.

https://doi.org/10.1016/j.clrc.2022.100059

Mertens, E., van't Veer, P., Hiddink, G. J., Steijns, J. M., and Kuijsten, A. (2016). Operationalising the health aspects of sustainable diets: a review. Public Health Nutrition, 20(4):739-757.

https://doi.org/10.1017/S1368980016002664

Moreira, R. P., Wanner, E., Martins, F. V. C., and Sarubbi, J. F. (2018). An evolutionary monoobjective approach for solving the menu planning problem. In 2018 IEEE Congress on Evolutionary Computation (CEC), pages 1-8. IEEE.

https://doi.org/10.1109/CEC.2018.8477888

Moreiras, O., Carbajal, A., Cabrera, L., and Cuadrado, C. (2017). Tablas de Composici'on de Alimentos: Gu'ıa de Pra'cticas. Grupo Anaya.

Perignon, M., Masset, G., Ferrari, G., Barr'e, T., Vieux, F., Maillot, M., Amiot, M.-J., and Darmon, N. (2016). How low can dietary greenhouse gas emissions be reduced without impairing nutritional adequacy, affordability and acceptability of the diet? a modelling study to guide sustainable food choices. Public Health Nutrition, 19(14):2662-2674.

https://doi.org/10.1017/S1368980016000653

Petot, G. J., Marling, C., and Sterling, L. (1998). An artificial intelligence system for computerassisted menu planning. Journal of the American Dietetic Association, 98(9):1009-1014.

https://doi.org/10.1016/S0002-8223(98)00231-4

Pool, U. and Dooris, M. (2021). Prevalence of food security in the UK measured by the food insecurity experience scale. Journal of Public Health, 44(3):634-641.

https://doi.org/10.1093/pubmed/fdab120

Resende, M. G. and Ribeiro, C. C. (2016). Optimization by GRASP. Springer-Verlag New York.

https://doi.org/10.1007/978-1-4939-6530-4

Rutten, M., Achterbosch, T. J., de Boer, I. J., Cuaresma, J. C., Geleijnse, J. M., Havl'ık, P., Heckelei, T., Ingram, J., Leip, A., Marette, S., van Meijl, H., Soler, L.-G., Swinnen, J., vant Veer, P., Vervoort, J., Zimmermann, A., Zimmermann, K. L., and Zurek, M. (2018). Metrics, models and foresight for european sustainable food and nutrition security: The vision of the SUSFANS project. Agricultural Systems, 163:45-57.

https://doi.org/10.1016/j.agsy.2016.10.014

Snorgaard, O., Poulsen, G. M., Andersen, H. K., and Astrup, A. (2017). Systematic review and meta-analysis of dietary carbohydrate restriction in patients with type 2 diabetes. BMJ Open Diabetes Research Care, 5(1):e000354.

https://doi.org/10.1136/bmjdrc-2016-000354

Springmann, M., Wiebe, K., Mason-D'Croz, D., Sulser, T. B., Rayner, M., and Scarborough, P. (2018). Health and nutritional aspects of sustainable diet strategies and their association with environmental impacts: a global modelling analysis with country-level detail. The Lancet Planetary Health, 2(10):e451-e461.

https://doi.org/10.1016/S2542-5196(18)30206-7

Stigler, G. J. (1945). The cost of subsistence. Journal of Farm Economics, 27(2):303-314.

https://doi.org/10.2307/1231810

Sufahani, S. and Ismail, Z. (2014). A new menu planning model for malaysian secondary schools using optimization approach. Applied Mathematical Sciences, 8:7511-7518.

https://doi.org/10.12988/ams.2014.49725

Syahputra, M. F., Felicia, V., Rahmat, R. F., and Budiarto, R. (2017). Scheduling diet for diabetes mellitus patients using genetic algorithm. Journal of Physics: Conference Series, 801:012033.

https://doi.org/10.1088/1742-6596/801/1/012033

Temme, E. H., Toxopeus, I. B., Kramer, G. F., Brosens, M. C., Drijvers, J. M., Tyszler, M., and Ock'e, M. C. (2014). Greenhouse gas emission of diets in the netherlands and associations with food, energy and macronutrient intakes. Public Health Nutrition, 18(13):2433-2445.

https://doi.org/10.1017/S1368980014002821

van Bussel, L., Kuijsten, A., Mars, M., Feskens, E., and van 't Veer, P. (2019). Taste profiles of diets high and low in environmental sustainability and health. Food Quality and Preference, 78:103730.

https://doi.org/10.1016/j.foodqual.2019.103730

van Dooren, C. and Aiking, H. (2015). Defining a nutritionally healthy, environmentally friendly, and culturally acceptable low lands diet. The International Journal of Life Cycle Assessment, 21(5):688-700.

https://doi.org/10.1007/s11367-015-1007-3

Wierzbicki, A. P. (1980). The Use of Reference Objectives in Multiobjective Optimization. In Fandel, G. and Gal, T., editors, Multiple Criteria Decision Making Theory and Application, pages 468-486. Springer Berlin Heidelberg, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-642-48782-8_32

Wilson, N., Nghiem, N., Mhurchu, C. N., Eyles, H., Baker, M. G., and Blakely, T. (2013). Foods and Dietary Patterns That Are Healthy, Low-Cost, and Environmentally Sustainable: A Case Study of Optimization Modeling for New Zealand. PLoS ONE, 8(3):e59648.

https://doi.org/10.1371/journal.pone.0059648

Descargas

Publicado

2024-10-08

Cómo citar

Martos-Barrachina, F. (2024). Una alimentación sana y sostenible es posible: Diseño de menús personalizados con programación multiobjetivo. Revista Electrónica De Comunicaciones Y Trabajos De ASEPUMA, 25(1), 93–114. https://doi.org/10.24310/recta.25.1.2024.20358