Self-Organization and Multifractality in Inflation and Price Systems

Authors

DOI:

https://doi.org/10.24310/recta.23.1.2022.20455

Keywords:

Inflation, Complex systems, power-law distribution, self-organization, multifractal analysis

Abstract

The analysis of price systems as complex systems is of utmost importance to understand the allocation of resources in the economy based on the interactions between agents. In this paper, the price system of the Uruguayan economy is analyzed using the consumer price index disaggregated at the product level and the general index as inputs. From the analysis of the distribution of the price variations in each period and the general price variations and performing a multifractal analysis, we obtain robust and consistent results in the sense of understanding the price variations as coming from complex systems. Main results indicate that the hypothesis of a power-law as the distribution of the analyzed series is not rejected, as well as the persistent behavior of price variations is modified by large fluctuations in the system.

Downloads

Download data is not yet available.

Publication Facts

Metric
This article
Other articles
Peer reviewers 
0
2.4

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
N/A
32%
Competing interests 
N/A
11%
Metric
This journal
Other journals
Articles accepted 
4%
33%
Days to publication 
795
145

Indexed in

Editor & editorial board
profiles
Academic society 
N/A
Publisher 
UMA Editorial. Universidad de Málaga

References

Alvarez, E., Brida, J. G., Martínez, M., & Mones, P. (2022). Análisis de redes complejas: un estudio de la inflación en Uruguay. Revista Finanzas y Política Económica, 14(1), 131-166.

https://doi.org/10.14718/revfinanzpolitecon.v14.n1.2022.6

Alvarez, E., Brida, J. G., & Mones, P. (2021). Dinámica de la estructura de precios en Uruguay. Rect@: Revista Electrónica de Comunicaciones y Trabajos de ASEPUMA, 22(1), 1-19.

https://doi.org/10.24309/recta.2021.22.1.01

Alvarez, E. & London, S. (2020). Emerging patterns in inflation expectations with multiple agents. Journal of Dynamics & Games, 7(3), 175.

https://doi.org/10.3934/jdg.2020012

Bak, P. & Chen, K. (1991). Self-organized criticality. Scientific American, 264(1), 46-53.

https://doi.org/10.1038/scientificamerican0191-46

Bak, P., Tang, C., & Wiesenfeld, K. (1988). Self-organized criticality. Physical review A, 38(1), 364.

https://doi.org/10.1103/PhysRevA.38.364

Balassa, B. (1964). The purchasing-power parity doctrine: a reappraisal. Journal of Political Economy, 72(6), 584-596.

https://doi.org/10.1086/258965

Boubaker, H., Canarella, G., Gupta, R., & Miller, S. M. (2017). Time-varying persistence of inflation: evidence from a wavelet-based approach. Studies in Nonlinear Dynamics & Econometrics, 21(4).

https://doi.org/10.1515/snde-2016-0130

Bryan, M. F. & Cecchetti, S. G. (1999). Inflation and the distribution of price changes. Review of Economics and Statistics, 81(2), 188-196.

https://doi.org/10.1162/003465399558148

Cancelo, J. R., Fern'andez, A., Grosskoff, R., Selves, R., & Villamonte, G. (1994). Precios de transables y no transables: Un enfoque arima-ia. IX Jornadas de Econom'ıa del Banco Central del Uruguay, Montevideo, Uruguay.

Caraballo, M. & Dabus, C. (2005). Nominal rigidities, relative prices and skewness. Centro de Estudios Andaluces, Working Paper series.

Clementi, F. & Gallegati, M. (2005). Pareto's law of income distribution: Evidence for germany, the united kingdom, and the united states. In Econophysics of wealth distributions (pp. 3-14). Springer.

https://doi.org/10.1007/88-470-0389-X_1

De Gregorio, J., Giovannini, A., & Wolf, H. C. (1994). International evidence on tradables and nontradables inflation. European Economic Review, 38(6), 1225-1244.

https://doi.org/10.1016/0014-2921(94)90070-1

Drăgulescu, A. & Yakovenko, V. M. (2001). Exponential and power-law probability distributions of wealth and income in the United Kingdom and the United States. Physica A: Statistical Mechanics and its Applications, 299(1-2), 213-221.

https://doi.org/10.1016/S0378-4371(01)00298-9

Fernandes, L. H., Araújo, F. H., Silva, I. E., Leite, U. P., de Lima, N. F., Stosic, T., & Ferreira, T. A. (2020). Multifractal behavior in the dynamics of brazilian inflation indices. Physica A: Statistical Mechanics and its Applications, 550, 124158.

https://doi.org/10.1016/j.physa.2020.124158

Gabaix, X. (1999). Zipf's law for cities: An explanation. The Quarterly Journal of Economics, 114(3), 739-767.

https://doi.org/10.1162/003355399556133

Hurst, H. E. (1951). Long-term storage capacity of reservoirs. Transactions of the American society of civil engineers, 116(1), 770-799.

https://doi.org/10.1061/TACEAT.0006518

Kearns, J. et al. (1998). Measuring core inflation- rdp 9810: The distribution and measurement of inflation. Reserve Bank of Australia Research Discussion Papers, (September).

Mandelbrot, B. & Taylor, H. M. (1967). On the distribution of stock price differences. Operations Research, 15(6), 1057-1062.

https://doi.org/10.1287/opre.15.6.1057

Mantegna, R. N. & Stanley, H. E. (1999). Introduction to econophysics: correlations and complexity in finance. Cambridge University Press.

https://doi.org/10.1017/CBO9780511755767

Samuelson, P. A. (1964). Theoretical notes on trade problems. The Review of Economics and Statistics, (pp. 145-154).

https://doi.org/10.2307/1928178

Scharnagl, M. & Stapf, J. (2014). Inflation, deflation, and uncertainty: What drives euro area option-implied inflation expectations and are they still anchored in the sovereign debt crisis? Bundesbank Discussion Paper.

https://doi.org/10.2139/ssrn.2797002

Tohmér, F., Dabús, C., & London, S. (2005). Processes of evolutionary self-organization in high inflation experiences. In New Tools of Economic Dynamics (pp. 357-371). Springer.

https://doi.org/10.1007/3-540-28444-3_21

Downloads

Published

2022-06-30

How to Cite

Alvarez, E. (2022). Self-Organization and Multifractality in Inflation and Price Systems. Revista Electrónica De Comunicaciones Y Trabajos De ASEPUMA, 23(1), 77–87. https://doi.org/10.24310/recta.23.1.2022.20455