Self-Organization and Multifractality in Inflation and Price Systems
DOI:
https://doi.org/10.24310/recta.23.1.2022.20455Keywords:
Inflation, Complex systems, power-law distribution, self-organization, multifractal analysisAbstract
The analysis of price systems as complex systems is of utmost importance to understand the allocation of resources in the economy based on the interactions between agents. In this paper, the price system of the Uruguayan economy is analyzed using the consumer price index disaggregated at the product level and the general index as inputs. From the analysis of the distribution of the price variations in each period and the general price variations and performing a multifractal analysis, we obtain robust and consistent results in the sense of understanding the price variations as coming from complex systems. Main results indicate that the hypothesis of a power-law as the distribution of the analyzed series is not rejected, as well as the persistent behavior of price variations is modified by large fluctuations in the system.
Downloads
Publication Facts
Reviewer profiles N/A
Author statements
Indexed in
-
—
- Academic society
- N/A
- Publisher
- UMA Editorial. Universidad de Málaga
References
Alvarez, E., Brida, J. G., Martínez, M., & Mones, P. (2022). Análisis de redes complejas: un estudio de la inflación en Uruguay. Revista Finanzas y Política Económica, 14(1), 131-166.
https://doi.org/10.14718/revfinanzpolitecon.v14.n1.2022.6
Alvarez, E., Brida, J. G., & Mones, P. (2021). Dinámica de la estructura de precios en Uruguay. Rect@: Revista Electrónica de Comunicaciones y Trabajos de ASEPUMA, 22(1), 1-19.
https://doi.org/10.24309/recta.2021.22.1.01
Alvarez, E. & London, S. (2020). Emerging patterns in inflation expectations with multiple agents. Journal of Dynamics & Games, 7(3), 175.
https://doi.org/10.3934/jdg.2020012
Bak, P. & Chen, K. (1991). Self-organized criticality. Scientific American, 264(1), 46-53.
https://doi.org/10.1038/scientificamerican0191-46
Bak, P., Tang, C., & Wiesenfeld, K. (1988). Self-organized criticality. Physical review A, 38(1), 364.
https://doi.org/10.1103/PhysRevA.38.364
Balassa, B. (1964). The purchasing-power parity doctrine: a reappraisal. Journal of Political Economy, 72(6), 584-596.
https://doi.org/10.1086/258965
Boubaker, H., Canarella, G., Gupta, R., & Miller, S. M. (2017). Time-varying persistence of inflation: evidence from a wavelet-based approach. Studies in Nonlinear Dynamics & Econometrics, 21(4).
https://doi.org/10.1515/snde-2016-0130
Bryan, M. F. & Cecchetti, S. G. (1999). Inflation and the distribution of price changes. Review of Economics and Statistics, 81(2), 188-196.
https://doi.org/10.1162/003465399558148
Cancelo, J. R., Fern'andez, A., Grosskoff, R., Selves, R., & Villamonte, G. (1994). Precios de transables y no transables: Un enfoque arima-ia. IX Jornadas de Econom'ıa del Banco Central del Uruguay, Montevideo, Uruguay.
Caraballo, M. & Dabus, C. (2005). Nominal rigidities, relative prices and skewness. Centro de Estudios Andaluces, Working Paper series.
Clementi, F. & Gallegati, M. (2005). Pareto's law of income distribution: Evidence for germany, the united kingdom, and the united states. In Econophysics of wealth distributions (pp. 3-14). Springer.
https://doi.org/10.1007/88-470-0389-X_1
De Gregorio, J., Giovannini, A., & Wolf, H. C. (1994). International evidence on tradables and nontradables inflation. European Economic Review, 38(6), 1225-1244.
https://doi.org/10.1016/0014-2921(94)90070-1
Drăgulescu, A. & Yakovenko, V. M. (2001). Exponential and power-law probability distributions of wealth and income in the United Kingdom and the United States. Physica A: Statistical Mechanics and its Applications, 299(1-2), 213-221.
https://doi.org/10.1016/S0378-4371(01)00298-9
Fernandes, L. H., Araújo, F. H., Silva, I. E., Leite, U. P., de Lima, N. F., Stosic, T., & Ferreira, T. A. (2020). Multifractal behavior in the dynamics of brazilian inflation indices. Physica A: Statistical Mechanics and its Applications, 550, 124158.
https://doi.org/10.1016/j.physa.2020.124158
Gabaix, X. (1999). Zipf's law for cities: An explanation. The Quarterly Journal of Economics, 114(3), 739-767.
https://doi.org/10.1162/003355399556133
Hurst, H. E. (1951). Long-term storage capacity of reservoirs. Transactions of the American society of civil engineers, 116(1), 770-799.
https://doi.org/10.1061/TACEAT.0006518
Kearns, J. et al. (1998). Measuring core inflation- rdp 9810: The distribution and measurement of inflation. Reserve Bank of Australia Research Discussion Papers, (September).
Mandelbrot, B. & Taylor, H. M. (1967). On the distribution of stock price differences. Operations Research, 15(6), 1057-1062.
https://doi.org/10.1287/opre.15.6.1057
Mantegna, R. N. & Stanley, H. E. (1999). Introduction to econophysics: correlations and complexity in finance. Cambridge University Press.
https://doi.org/10.1017/CBO9780511755767
Samuelson, P. A. (1964). Theoretical notes on trade problems. The Review of Economics and Statistics, (pp. 145-154).
https://doi.org/10.2307/1928178
Scharnagl, M. & Stapf, J. (2014). Inflation, deflation, and uncertainty: What drives euro area option-implied inflation expectations and are they still anchored in the sovereign debt crisis? Bundesbank Discussion Paper.
https://doi.org/10.2139/ssrn.2797002
Tohmér, F., Dabús, C., & London, S. (2005). Processes of evolutionary self-organization in high inflation experiences. In New Tools of Economic Dynamics (pp. 357-371). Springer.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.