Vibration roller versus conventional roller on recovery and performance. Systematic review
DOI:
https://doi.org/10.24310/riccafd.14.1.2025.21007Keywords:
vibration foam roller, foam roller, range of motion, strength, pain, sports performanceAbstract
The aim of the present study was to systematically review the available evidence on the effectiveness of the vibration foam roller (VFR) versus the conventional foam roller (FR) on pain, sports performance and range of motion (ROM) in physically active individuals. A systematic search of Medline, PEDro, Cochrane and Scopus databases was conducted following PRISMA guidelines. The methodological quality and risk of bias of the studies were assessed with PEDro scale and Cochrane tool respectively. The 15 included clinical trials showed that VFR produces statistically significant increases (p<0,05) in all parameters analysed except strength. However, there are discrepancies about its effectiveness compared to FR. VFR is non-significantly (p>0,05) superior to FR in pain, tissue stiffness, joint stability and post-exercise recovery. No consensus has been found on ROM and strength.
Downloads
Metrics
References
Grandou C, Wallace L, Coutts AJ, Bell L, Impellizzeri FM. Symptoms of Overtraining in Resistance Exercise: International Cross-Sectional Survey. Int J Sports Physiol Perform. 2021;16(1):80–9. Disponible en: https://doi.org/10.1123/ijspp.2019-0825
Egan B, Sharples AP. Molecular responses to acute exercise and their relevance for adaptations in skeletal muscle to exercise training. Physiol Rev. 2023;103(3):2057–170. Disponible en: https://doi.org/10.1152/physrev.00054.2021
Wheeler AH. Myofascial pain disorders: theory to therapy. Drugs. 2004;64(1):45–62. Disponible en: https://doi.org/10.2165/00003495-200464010-00004
Musat CL, Niculet E, Craescu M, Nechita L, Iancu L, Nechita A, et al. Pathogenesis of Musculotendinous and Fascial Injuries After Physical Exercise - Short Review. Int J Gen Med. 2023;16:5247–54. Disponible en: https://doi.org/10.2147/ijgm.s432749
Fernández-Lázaro D. Estrategias ergogénicas para la optimización del rendimiento y la salud en practicantes de actividad física regular: evaluación de la eficacia de la crioterapia compresiva, de la exposición a hipoxia intermitente en reposo y entrenamiento sectorizado de los músculos inspiratorios. Tesis doctoral, Universidad de León, León, España, 2020. Disponible en: https://dialnet.unirioja.es/servlet/tesis?codigo=286163 &info=resumen&idioma=SP
Schroeder AN, Best TM. Is Self Myofascial Release an Effective Preexercise and Recovery Strategy? A Literature Review. Curr Sports Med Rep. 2015;14(3):200–8. Disponible en: https://doi.org/10.1249/jsr.0000000000000148
Cheatham SW, Kolber MJ, Cain M, Lee M. The effects of self-myofascial release using a foam roll or roller massager on joint range of motion, muscle recovery, and performance: A systematic review. Int J Sports Phys Ther. 2015;10(6):827–38. Disponible en: https://pubmed.ncbi.nlm.nih.gov/26618062/
Pearcey GEP, Bradbury-Squires DJ, Kawamoto J-E, Dronkwater EJ, Behm DG, Button DC. Foam rolling for delayed-onset muscle soreness and recovery of dynamic performance measures. J Athl Train. 2015;50(1):5–13. Disponible en: https://doi.org/10.4085/1062-6050-50.1.01
Hughes GA, Ramer LM. Duration of myofascil for optimal recovery, range of motion, and performance: A systematic review of the literature. Int J Sports Phys Ther. 2019;14(6):845–59. Disponible en: https://pubmed.ncbi.nlm.nih.gov/31803517/
Bradbury-Squires DJ, Noftall JC, Sullivan KM, Behm DG, Power KE, Button DC. Roller-Massager Application to the Quadriceps and Knee-Joint Range of Motion and Neuromuscular Efficiency During a Lunge. J Athl Train. 2015;50(2):133–40. Disponible en: https://doi.org/10.4085/1062-6050-49.5.03
Mohr AR, Long BC, Goad CL. Effect of Foam Rolling and Static Stretching on Passive Hip-Flexion Range of Motion. J Sport Rehabil. 2014;23(4):296–9. Disponible en: https://doi.org/10.1123/jsr.2013-0025
Fernández-Lázaro D, Fernández-Lázaro C, Santamaría G, Seco-Calvo J. Efectos del rodillo de espuma o foam roller sobre el rango de movimiento, la flexibilidad, la fuerza y el dolor muscular de inicio retardado en deportistas de alto rendimiento. Arch Med Deporte. 2023;40(3):145–54. Disponible en: https://dialnet.unirioja.es/servlet/articulo?codigo=9085821
Konrad A, Nakamura M, Behm DG. The Effects of Foam Rolling Training on Performance Parameters: A Systematic Review and Meta-Analysis including Controlled and Randomized Controlled Trials. Int J Environ Res Public Health. 2022;19(18):11638. Disponible en: https://doi.org/10.3390/ijerph191811638
Wiewelhove T, Döweling A, Schneider C, Hottenrott L, Meyer T, Kellmann M, et al. A meta-analysis of the effects of foam rolling on performance and recovery. Front Physiol. 2019;10:376. Disponible en: https://doi.org/10.3389/fphys.2019.00376
Alonso-Calvete A, Lorenzo-Martínez M, Padrón-Cabo A, Pérez-Ferreirós A, Kalén A, Abelairas-Gómez C, et al. Does Vibration Foam Roller Influence Performance and Recovery? A Systematic Review and Meta-analysis. Sports Med Open. 2022;8(1):32. Disponible en: https://doi.org/10.1186/s40798-022-00421-2
Percival S, Sims DT, Stebbings GK. Local Vibration Therapy, Oxygen Resaturation Rate, and Muscle Strength After Exercise-Induced Muscle Damage. J Athl Train. 2022;57(5):502–9. Disponible en: https://doi.org/10.4085/1062-6050-0064.21
Weerapong P, Hume PA, Kolt GS. The Mechanisms of Massage and Effects on Performance, Muscle Recovery and Injury Prevention. Sports Med. 2005;35(3):235–56. Disponible en: https://doi.org/10.2165/00007256-200535030-00004
Da Silva M, Vaamonde D, Padullés J. Efectos del entrenamiento con vibraciones mecánicas sobre la “performance” neuromuscular. Apunts Prep física. 2006;84(2):39–47. Disponible en: https://redined.educacion.gob.es/xmlui/handle/11162/44858
Park S-J, Lee S-I, Jeong H-J, Kim B-G. Effect of vibration foam rolling on the range of motion in healthy adults: a systematic review and meta-analysis. J Exerc Rehabil. 2021;17(4):226–33. Disponible en: https://doi.org/10.12965/jer.2142322.161
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372(1):89. Disponible en: https://doi.org/10.1186/s13643-021-01626-4
Santos CMDC, Pimenta CADM, Nobre MRC. The PICO strategy for the research question construction and evidence search. Rev Lat Am Enfermagem. 2007;15(3):508–11. Disponible en: https://doi.org/10.1590/s0104-11692007000300023
Moseley AM, Elkins MR, Van der Wees PJ, Pinheiro MB. Using research to guide practice: The Physiotherapy Evidence Database (PEDro). Brazilian J Phys Ther. 2020;24(5):384–91. Disponible en: https://doi.org/10.1016/j.bjpt.2019.11.002
Higgins JPT, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928. Disponible en: https://doi.org/10.1136/bmj.d5928
Ruggieri RM, Coburn JW, Galpin AJ, Costa PB. Effects of a Vibrating Foam Roller on Ipsilateral and Contralateral Neuromuscular Function and the Hamstrings-to-Quadriceps Ratios. Int J Exerc Sci. 2021;14(1):304–23. Disponible en: https://pubmed.ncbi.nlm.nih.gov/34055140/
Romero-Moradela B, González-García J, Cuéllar-Rayo A, Balsalobre-Fernández C, Muñoz-García D, Morencos E. Effects of Vibration and Non-Vibration Foam Rolling on Recovery after Exercise with Induced Muscle Damage. J Sports Sci Med. 2019;18(1):172–80. Disponible en: https://pubmed.ncbi.nlm.nih.gov/30787665/
Kasahara K, Konrad A, Yoshida R, Murakami Y, Koizumi R, Sato S, et al. Comparison of the Prolonged Effects of Foam Rolling and Vibration Foam Rolling Interventions on Passive Properties of Knee Extensors. J Sports Sci Med. 2022;21(4):580–5. Disponible en: https://doi.org/10.52082/jssm.2022.580
Alonso-Calvete A, Lage-Rey A, Lorenzo-Martínez M, Rey E. Does a short intervention with vibration foam roller recover lifeguards better after a water rescue? A pilot study. Am J Emerg Med. 2021;49:71–5. Disponible en: https://doi.org/10.1016/j.ajem.2021.04.089
Lai YH, Wang AY, Yang CC, Guo LY. The Recovery Benefit on Skin Blood Flow Using Vibrating Foam Rollers for Postexercise Muscle Fatigue in Runners. Int J Environ Res Public Health. 2020;17(23):9118. Disponible en: https://doi.org/10.3390/ijerph17239118
Tsai W-C, Chen Z-R. The Acute Effect of Foam Rolling and Vibration Foam Rolling on Drop Jump Performance. Int J Environ Res Public Health. 2021;18(7):3489. Disponible en: https://doi.org/10.3390/ijerph18073489
Kasahara K, Konrad A, Yoshida R, Murakami Y, Sato S, Koizumi R, et al. Comparison of acute and prolonged effects of short-term foam rolling and vibration foam rolling on the properties of knee extensors. Biol Sport. 2024;41(2):19–26. Disponible en: https://doi.org/10.5114/biolsport.2024.129488
de Benito AM, Valldecabres R, Ceca D, Richards J, Igual JB, Pablos A. Effect of vibration vs non-vibration foam rolling techniques on flexibility, dynamic balance and perceived joint stability after fatigue. PeerJ. 2019;7:e8000. Disponible en: https://doi.org/10.7717/peerj.8000
Cheatham SW, Stull KR, Kolber MJ. Comparison of a Vibration Roller and a Nonvibration Roller Intervention on Knee Range of Motion and Pressure Pain Threshold: A Randomized Controlled Trial. J Sport Rehabil. 2019;28(1):39–45. Disponible en: https://doi.org/10.1123/jsr.2017-0164
Lim J-H, Park C-B. The immediate effects of foam roller with vibration on hamstring flexibility and jump performance in healthy adults. J Exerc Rehabil. 2019;15(1):50–4. Disponible en: https://doi.org/10.12965/jer.1836560.280
Lim J-H, Park C-B, Kim B-G. The effects of vibration foam roller applied to hamstring on the quadriceps electromyography activity and hamstring flexibility. J Exerc Rehabil. 2019;15(4):560–5. Disponible en: https://doi.org/10.12965/jer.1938238.119
García-Gutiérrez M, Guillén-Rogel P, Cochrane D, Marín P. Cross transfer acute effects of foam rolling with vibration on ankle dorsiflexion range of motion. J Musculoskelet Neuronal Interact. 2018;18(2):262–7. Disponible en: https://pubmed.ncbi.nlm.nih.gov/29855449/
Reiner MM, Glashüttner C, Bernsteiner D, Tilp M, Guilhem G, Morales-Artacho A, et al. A comparison of foam rolling and vibration foam rolling on the quadriceps muscle function and mechanical properties. Eur J Appl Physiol. 2021;121(5):1461–71. Disponible en: https://doi.org/10.1007/s00421-021-04619-2
Nakamura M, Sato S, Kiyono R, Yoshida R, Yasaka K, Yahata K, et al. Comparison Between Foam Rolling With and Without Vibration on Passive and Active Plantar Flexor Muscle Properties. J strength Cond Res. 2022;36(12):3339–44. Disponible en: https://doi.org/10.1519/jsc.0000000000004123
Kasahara K, Konrad A, Yoshida R, Murakami Y, Sato S, Aizawa K. Comparison between 6-week foam rolling intervention program with and without vibration on rolling and non-rolling sides. Eur J Appl Physiol. 2022;122(9):2061–70. Disponible en: https://doi.org/10.1007/s00421-022-04975-7
Komada Y, Masuda S, Ohmori T, Kanamaru A, Tanaka M, Sakaguchi T, et al. Response to mechanical Properties and Physiological Challenges of Fascia: Diagnosis and Rehabilitative Therapeutic Intervention for Myofascial System Disorders. Bioengineering (Basel). 2023;10(4):474. Disponible en: https://doi.org/10.3390/bioengineering10040474
Zügel M, Maganaris CN, Wilke J, Jurkat-Rot K, Klingler W, Wearing S, et al. Facial tissue research in sports medicine: from molecules to tissue adaptation, injury and diagnostic consensus statement. Br J Sport Med. 2018;52(23):1497. Disponible en: https://doi.org/10.1136/bjsports-2018-099308
MacDonald GZ, Penney MDH, Mullaley ME, Cuconato AL, Drake CDJ, Behm DG, et al. An acute bout of self-myofascial release increase range of motion without a subseauent decrease in muscle activation or force. J Strength Cond Res. 2013;27(3):812–21. Disponible en: https://doi.org/10.1519/jsc.0b013e31825c2bc1
Behm DG, Wilke J. Do Self-Myofascial Release Devices Release Myofascia? Rolling Mechanisms: A Narrative Review. Sports Med. 2019;49(8):1173–81. Disponible en: https://doi.org/10.1007/s40279-019-01149-y
Beardsley C, Škarabot J. Effects of self-myofascial release: A systematic review. J Bodyw Mov Ther. 2015;19(4):747–58. Disponible en: https://doi.org/10.1016/j.jbmt.2015.08.007
Pournot H, Tindel J, Testa R, Mathevon L, Lapole T. The Acutte Effect of Local vibration As a Recovery Modality from Exercise-Induced Increased Muscle Stiffness. J Sports Sci Med. 2016;15(1):142–7. Disponible en: https://pubmed.ncbi.nlm.nih.gov/26957937/
Dallas G, Paradisis G, Kirialanis P, Mellos V, Argitaki P, Smirniotou A. The acute effects of different training loads of whole body vibration on flexibility and explosive strength of lower limbs in divers. Biol Sport. 2015;32(3):235–41. Disponible en: https://doi.org/10.5604/20831862.1163373
Phillips J, Diggin D, King DL, Sforzo GA. Effect of Varying Self-myofascial Release Duration on Subsequent Athletic Performance. J strength Cond Res. 2021;35(3):746–53. Disponible en: https://doi.org/10.1519/jsc.0000000000002751
Konrad A, Alizadeh S, Anvar SH, Fischer J, Manieu J, Behm D. Static Stretch Training versus Foam Rolling Training Effects on Range of Motion: A Systematic Review and Meta-Analysis. Sports Med. 2024;54(9):2311–26. Disponible en: https://doi.org/10.1007/s40279-024-02041-0
Cochrane DJ. Effective of using wearable vibration therapy to alleviate muscle soreness. Eur J Appli Physiol. 2017;117(3):501–9. Disponible en: https://doi.org/10.1007/s00421-017-3551-y
Healey KC, Hatfield DL, Blanpied P, Dorfman LR, Riebe D. The effects of Myofascial Release With Foam Rolling on Performance. J Strength Cond Res. 2014;28(1):61–8. Disponible en: https://doi.org/10.1519/jsc.0b013e3182956569
Joro R, Uusitalo A, DeRuisseau KC, Atalay M. Changes in cytokines, leptin, and IGF-1 levels in overtrained athletes during a prolonged recovery phase: a Case-control study. J Sports Sci. 2017;35(23):2342–9. Disponible en: https://doi.org/10.1080/02640414.2016.1266379
Moayedi M, Davis KD. Theories of pain: from specificity to gate control. J Neurophysiol. 2013;109(1):5–12. Disponible en: https://doi.org/10.1152/jn.00457.2012
Guo D, Hu J. Spinal presynaptic inhibition in pain control. Neuroscience. 2014;283:95–106. Disponible en: https://doi.org/10.1016/j.neuroscience.2014.09.032
Cerciello S, Rossi S, Visonà E, Corona K, Oliva F. Clinical applications of vibration therapy in orthopaedic practice. Muscles Ligaments Tendons J. 2016;6(1):147–56. Disponible en: https://doi.org/10.11138/mltj/2016.6.1.147
Kellmann M. Preventing overtraining in athletes in high-intensity sports and stress/recovery monitoring. Scand J Med Sci Sports. 2010;20(supl 2):95–102. Disponible en: https://doi.org/10.1111/j.1600-0838.2010.01192.x
Carrard J, Rigort A, Appenzeller-Herzog C, Colledge F, Königstein K, Hinrichs T, et al. Diagnosis Overtraining Syndrome: A Scoping Review. Sports Health. 2022;14(5):665–73. Disponible en: https://doi.org/10.1177/19417381211044739
Dupuy O, Douzi W, Theurot D, Bosquet L, Dugué B. An Evidence-Based Approach for Choosing Post-exercise Recovery Techniques to Reduce Markers of Muscle Damage, Soreness, Fatigue, and Inflammation: A Systematic Review With Meta-Analysis. Front Physiol. 2018;9:403. Disponible en: https://doi.org/10.3389/fphys.2018.00403
Cochrane DJ. Vibration exercise: the potential benefits. Int J Sports Med. 2011;32(2):75–99. Disponible en: https://doi.org/10.1055/s-0030-1268010
Mitchell UH, Johnson PK. Vibration and skin blood flow changes in subjects with restless legs syndrome. Journal of Parkinsonism and Restless Legs Syndrome. 2014;4:9–16. Disponible en: http://dx.doi.org/10.2147/JPRLS.S58556
Peacock CA, Krein DD, Silver TA, Sanders GJ, Carlowitz KP. An Acute Bout of Self-Myofascial Release in the Form of Foam Rolling Improves Performance Testing. Int J Exerc Sci. 2014;7(3):202–11. Disponible en: https://pubmed.ncbi.nlm.nih.gov/27182404/
Cochrane DJ. The potential neural mechanism of acute vibration. J Sports Sci Med. 2011;10(1):19–30. Disponible en: https://pubmed.ncbi.nlm.nih.gov/24149291/
Pamukoff DN, Ryan ED, Blackburn JT. The acute effects of local muscle vibration frequency on peak torque, rate of torque development, and EMG activity. J Electromyogr Kinesiol. 2014;24(6):888–94. Disponible en: https://doi.org/10.1016/j.jelekin.2014.07.014
Eklund G, Hagbarth KE. Normal variability of tonic vibration reflexes in man. Exp Neurol. 1966;16(1):80–92. Disponible en: https://doi.org/10.1016/0014-4886(66)90088-4
Matthews PB. The reflex excitation of the soleus muscle of the decerebrate cat caused by vibration applied to its tendon. J Physiol. 1966;184(2):450–72. Disponible en: https://doi.org/10.1113/jphysiol.1966.sp007926
Benítez A, Carrillo de Albornoz M, García Romero J. Respuesta endocrina a la aplicación de vibraciones de cuerpo completo en humanos. Rev Andal Med Deporte. 2015;8(3):109–14. Disponible en: https://dx.doi.org/10.1016/j.ramd.2015.04.002
Iodice P, Bellomo RG, Gialluca G, Fanò G, Saggini R. Acute and cumulative effects of focused high-frequency vibrations on the endocrine system and muscle strength. Eur J Appl Physiol. 2011;111(6):897–904. Disponible en: https://doi.org/10.1007/s00421-010-1677-2
Stewart JA, Cochrane DJ, Morton RH. Differential effects of whole body vibration durations on knee extensor strength. J Sci Med Sport. 2009;12(1):50–3. Disponible en: https://doi.org/10.1016/j.jsams.2007.09.005
Bongiovanni LG, Hagnarth KE, Stjernberg L. Prolongued muscle vibration reducing motor output in maximal voluntary contractions in man. J Physiol. 1990;423:15–26. Disponible en: https://doi.org/10.1113/jphysiol.1990.sp018008
Mottram CJ, Maluf KS, Stephenson JL, Anderson MK, Enoka RM. Prolonged vibration of the biceps brachii tendon reduces time to failure when maintaining arm position with a submaximal load. J Neurophysiol. 2006;95(2):1185–93. Disponible en: https://doi.org/10.1152/jn.00807.2005
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Revista Iberoamericana de Ciencias de la Actividad Física y el Deporte

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
All the contents published in Revista Iberoamericana de Ciencias de la Actividad Física y el Deporte are subject to the Creative Commons Reconocimento-NoComercia-Compartirigual 4.0 license, the full text of which can be found at <http://creativecommons.org/licenses/by-nc-sa/4.0>
They may be copied, used, disseminated, transmitted and publicly exposed, provided that:
The authorship and original source of your publication (Journal, editorial and URL of the work) are cited.
They are not used for commercial purposes.
The existence and specifications of this use license are mentioned.

Copyright is of two kinds: moral rights and patrimonial rights. Moral rights are perpetual, inalienable, inalienable, inalienable, inalienable and imprescriptible prerogatives.
In accordance with copyright legislation, Revista Eviterna recognizes and respects the moral rights of the authors, as well as the ownership of the economic right, which will be transferred to the University of Malaga for dissemination in open access.
The economic rights refer to the benefits obtained by the use or disclosure of the works. Revista Iberoamericana de Ciencias de la Actividad Física y el Deporte is published in open access and is exclusively authorized to carry out or authorize by any means the use, distribution, disclosure, reproduction, adaptation, translation or transformation of the work.
It is the responsibility of the authors to obtain the necessary permissions of the images that are subject to copyright.











9.png)