Herramientas tecnológicas para el estudio e intervención de la biomecanica en el deporte de alto rendimiento: una mirada desde fisioterapia

Autores/as

  • José Iván Alfonso Mantilla Universidad del Rosario Colombia

DOI:

https://doi.org/10.24310/riccafd.2019.v8i3.7491

Palabras clave:

rehabilitación, tecnología, medicina deportiva, alto rendimiento, biomecánica

Resumen

La biomecánica es el área de estudio de componentes cinéticos y cinemáticos implicados en el movimiento corporal humano profundizando en elementos tales como fuerza muscular, rangos de movimiento, aceleración, velocidad y desplazamiento. En el deporte de alto rendimiento, el estudio de las variables biomecánicas que inciden en el gesto motor es de vital importancia para entender los mecanismos de control y adaptación del movimiento a actividades especificas, con el fin de desarrollar programas para mejorar  la ejecución del movimiento en determinadas fases del gesto deportivo y prevenir lesiones a partir del estudio del gesto motor. Por tal motivo el objetivo de este artículo es realizar una revisión sistemática de la literatura sobre el uso de la tecnología para la evaluación e intervención de la biomecánica en el deporte de alto rendimiento

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Citas

Lesmes JD. Evaluación clínico-funcional del movimiento corporal humano: Ed. Médica Panamericana; 2007.

José A. Biomecánica deportiva y control del entrenamiento: Funámbulos Editores; 2009.

Izquierdo M, Redín MI. Biomecánica y bases neuromusculares de la actividad física y el deporte: Ed. Médica Panamericana; 2008.

Nicola TL, Jewison DJ. The anatomy and biomechanics of running. Clin Sports Med. 2012;31(2):187-201.

Pappas E, Nightingale EJ, Simic M, Ford KR, Hewett TE, Myer GD. Do exercises used in injury prevention programmes modify cutting task biomechanics? A systematic review with meta-analysis. Br J Sports Med. 2015;49(10):673-80.

Weiss K, Whatman C. Biomechanics Associated with Patellofemoral Pain and ACL Injuries in Sports. Sports Med. 2015;45(9):1325-37.

Thompson JA, Tran AA, Gatewood CT, Shultz R, Silder A, Delp SL, et al. Biomechanical Effects of an Injury Prevention Program in Preadolescent Female Soccer Athletes. Am J Sports Med. 2017;45(2):294-301.

Dugan SA, Bhat KP. Biomechanics and analysis of running gait. Phys Med Rehabil Clin N Am. 2005;16(3):603-21.

Chow JW, Knudson DV. Use of deterministic models in sports and exercise biomechanics research. Sports Biomech. 2011;10(3):219-33.

Sanchis-Gomar F, Pareja-Galeano H, Rodriguez-Marroyo JA, de Koning JJ, Lucia A, Foster C. Olympic Genes on the Podium? Int J Sports Physiol Perform. 2016;11(7):973-4.

Allen SV, Vandenbogaerde TJ, Pyne DB, Hopkins WG. Predicting a nation's olympic-qualifying swimmers. Int J Sports Physiol Perform. 2015;10(4):431-5.

Lucia A, Moran M, Zihong H, Ruiz JR. Elite athletes: are the genes the champions? Int J Sports Physiol Perform. 2010;5(1):98-102.

Mantilla JIA, Santa JM, Vargas OC. KINESIOGENÓMICA: UNA NUEVA PERSPECTIVA DE INVESTIGACIÓN EN FISIOTERAPIA. Revista Movimiento Científico. 2016;10(1):78-86.

Hebert-Losier K, Supej M, Holmberg HC. Biomechanical factors influencing the performance of elite Alpine ski racers. Sports Med. 2014;44(4):519-33.

Keogh JW, Hume PA. Evidence for biomechanics and motor learning research improving golf performance. Sports Biomech. 2012;11(2):288-309.

Ferreira MI, Barbosa TM, Costa MJ, Neiva HP, Marinho DA. Energetics, Biomechanics, and Performance in Masters' Swimmers: A Systematic Review. J Strength Cond Res. 2016;30(7):2069-81.

Keogh JW. Paralympic sport: an emerging area for research and consultancy in sports biomechanics. Sports Biomech. 2011;10(3):234-53.

Verhagen E, Bolling C. Protecting the health of the @hlete: how online technology may aid our common goal to prevent injury and illness in sport. Br J Sports Med. 2015;49(18):1174-8.

Abrams GD, Harris AH, Andriacchi TP, Safran MR. Biomechanical analysis of three tennis serve types using a markerless system. Br J Sports Med. 2014;48(4):339-42.

Sheets AL, Abrams GD, Corazza S, Safran MR, Andriacchi TP. Kinematics differences between the flat, kick, and slice serves measured using a markerless motion capture method. Ann Biomed Eng. 2011;39(12):3011-20.

Corazza S, Mundermann L, Chaudhari AM, Demattio T, Cobelli C, Andriacchi TP. A markerless motion capture system to study musculoskeletal biomechanics: visual hull and simulated annealing approach. Ann Biomed Eng. 2006;34(6):1019-29.

Sandau M, Koblauch H, Moeslund TB, Aanaes H, Alkjaer T, Simonsen EB. Markerless motion capture can provide reliable 3D gait kinematics in the sagittal and frontal plane. Med Eng Phys. 2014;36(9):1168-75.

Abrams GD, Sheets AL, Andriacchi TP, Safran MR. Review of tennis serve motion analysis and the biomechanics of three serve types with implications for injury. Sports Biomech. 2011;10(4):378-90.

Auvinet E, Multon F, Meunier J. Gait analysis with multiple depth cameras. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:6265-8.

Kwon YH, Casebolt JB. Effects of light refraction on the accuracy of camera calibration and reconstruction in underwater motion analysis. Sports Biomech. 2006;5(1):95-120.

Korhonen MT, Suominen H, Viitasalo JT, Liikavainio T, Alen M, Mero AA. Variability and symmetry of force platform variables in maximum-speed running in young and older athletes. J Appl Biomech. 2010;26(3):357-66.

Pastorelli F, Pasquetti P. Biomechanical analysis and rehabilitation in athletes. Clin Cases Miner Bone Metab. 2013;10(2):96.

Pietraszewski B, Struzik A. Evaluation of selected biomechanical parameters in female team sports players. Acta Bioeng Biomech. 2013;15(4):103-8.

Sinitski EH, Lemaire ED, Baddour N. Evaluation of motion platform embedded with dual belt treadmill instrumented with two force plates. J Rehabil Res Dev. 2015;52(2):221-34.

Plessa EI, Rousanoglou EN, Boudolos KD. Comparison of the take-off ground reaction force patterns of the pole vault and the long jump. J Sports Med Phys Fitness. 2010;50(4):416-21.

Fritz M, Peikenkamp K. Simulation of the influence of sports surfaces on vertical ground reaction forces during landing. Med Biol Eng Comput. 2003;41(1):11-7.

Ericksen HM, Gribble PA, Pfile KR, Pietrosimone BG. Different modes of feedback and peak vertical ground reaction force during jump landing: a systematic review. J Athl Train. 2013;48(5):685-95.

Liu H, Wu W, Yao W, Spang JT, Creighton RA, Garrett WE, et al. Effects of knee extension constraint training on knee flexion angle and peak impact ground-reaction force. Am J Sports Med. 2014;42(4):979-86.

Khorievin VI, Horkovenko AV, Vereshchaka IV. [Displacement of center of pressure on the support and changes of the joint angles of the lower extremity at squatting]. Fiziol Zh. 2012;58(3):32-42.

Mullin DS, King GW, Saripalle SK, Derakhshani RR, Lovelace CT, Burgoon JK. Deception effects on standing center of pressure. Hum Mov Sci. 2014;38:106-15.

Mann R, Malisoux L, Urhausen A, Meijer K, Theisen D. Plantar pressure measurements and running-related injury: A systematic review of methods and possible associations. Gait Posture. 2016;47:1-9.

Cretual A. Which biomechanical models are currently used in standing posture analysis? Neurophysiol Clin. 2015;45(4-5):285-95.

MacKenzie SJ, Lavers RJ, Wallace BB. A biomechanical comparison of the vertical jump, power clean, and jump squat. J Sports Sci. 2014;32(16):1576-85.

Tartaruga MP, Brisswalter J, Peyre-Tartaruga LA, Avila AO, Alberton CL, Coertjens M, et al. The relationship between running economy and biomechanical variables in distance runners. Res Q Exerc Sport. 2012;83(3):367-75.

Knarr BA, Zeni JA, Jr., Higginson JS. Comparison of electromyography and joint moment as indicators of co-contraction. J Electromyogr Kinesiol. 2012;22(4):607-11.

Lloyd DG, Besier TF. An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo. J Biomech. 2003;36(6):765-76.

Clarys JP. Electromyography in sports and occupational settings: an update of its limits and possibilities. Ergonomics. 2000;43(10):1750-62.

Howard RM, Conway R, Harrison AJ. A survey of sensor devices: use in sports biomechanics. Sports Biomech. 2016;15(4):450-61.

Escamilla RF, Andrews JR. Shoulder muscle recruitment patterns and related biomechanics during upper extremity sports. Sports Med. 2009;39(7):569-90.

He B, Bai J, Zipunnikov VV, Koster A, Caserotti P, Lange-Maia B, et al. Predicting human movement with multiple accelerometers using movelets. Med Sci Sports Exerc. 2014;46(9):1859-66.

Xiao L, He B, Koster A, Caserotti P, Lange-Maia B, Glynn NW, et al. Movement prediction using accelerometers in a human population. Biometrics. 2016;72(2):513-24.

Myklebust H, Losnegard T, Hallen J. Differences in V1 and V2 ski skating techniques described by accelerometers. Scand J Med Sci Sports. 2014;24(6):882-93.

Broglio SP, Surma T, Ashton-Miller JA. High school and collegiate football athlete concussions: a biomechanical review. Ann Biomed Eng. 2012;40(1):37-46.

Bradshaw EJ, Hume PA. Biomechanical approaches to identify and quantify injury mechanisms and risk factors in women's artistic gymnastics. Sports Biomech. 2012;11(3):324-41.

Allison MA, Kang YS, Maltese MR, Bolte JHt, Arbogast KB. Measurement of Hybrid III Head Impact Kinematics Using an Accelerometer and Gyroscope System in Ice Hockey Helmets. Ann Biomed Eng. 2015;43(8):1896-906.

Allison MA, Kang YS, Bolte JHt, Maltese MR, Arbogast KB. Validation of a helmet-based system to measure head impact biomechanics in ice hockey. Med Sci Sports Exerc. 2014;46(1):115-23.

Campbell KR, Warnica MJ, Levine IC, Brooks JS, Laing AC, Burkhart TA, et al. Laboratory Evaluation of the gForce Tracker, a Head Impact Kinematic Measuring Device for Use in Football Helmets. Ann Biomed Eng. 2016;44(4):1246-56.

Alberts JL, Hirsch JR, Koop MM, Schindler DD, Kana DE, Linder SM, et al. Using Accelerometer and Gyroscopic Measures to Quantify Postural Stability. J Athl Train. 2015;50(6):578-88.

Ma J, Kharboutly H, Benali A, Benamar F, Bouzit M. Joint angle estimation with accelerometers for dynamic postural analysis. J Biomech. 2015;48(13):3616-24.

Herman Hansen B, Bortnes I, Hildebrand M, Holme I, Kolle E, Anderssen SA. Validity of the ActiGraph GT1M during walking and cycling. J Sports Sci. 2014;32(6):510-6.

King GA, Torres N, Potter C, Brooks TJ, Coleman KJ. Comparison of activity monitors to estimate energy cost of treadmill exercise. Med Sci Sports Exerc. 2004;36(7):1244-51.

Dong B, Biswas S, Montoye A, Pfeiffer K. Comparing metabolic energy expenditure estimation using wearable multi-sensor network and single accelerometer. Conf Proc IEEE Eng Med Biol Soc. 2013;2013:2866-9.

Nguyen DM, Lecoultre V, Sunami Y, Schutz Y. Assessment of physical activity and energy expenditure by GPS combined with accelerometry in real-life conditions. J Phys Act Health. 2013;10(6):880-8.

Alfonso Mantilla J. USOS DE LOS ACELERÓMETROS EN FISIOTERAPIA: UNA REVISIÓN DE LA LITERATURA. Revista Iberoamericana de Ciencias de la Actividad Física y el Deporte. 2017;6(2).

Wahl Y, Duking P, Droszez A, Wahl P, Mester J. Criterion-Validity of Commercially Available Physical Activity Tracker to Estimate Step Count, Covered Distance and Energy Expenditure during Sports Conditions. Front Physiol. 2017;8:725.

Roche-Seruendo LE, Garcia-Pinillos F, Haicaguerre J, Bataller-Cervero AV, Soto-Hermoso VM, Latorre-Roman PA. Lack of influence of muscular performance parameters on spatio-temporal adaptations with increased running velocity. J Strength Cond Res. 2017.

Lienhard K, Schneider D, Maffiuletti NA. Validity of the Optogait photoelectric system for the assessment of spatiotemporal gait parameters. Med Eng Phys. 2013;35(4):500-4.

Gomez Bernal A, Becerro-de-Bengoa-Vallejo R, Losa-Iglesias ME. Reliability of the OptoGait portable photoelectric cell system for the quantification of spatial-temporal parameters of gait in young adults. Gait Posture. 2016;50:196-200.

Cho M, Jun I. Effects of pelvic adjustment on female university students' gait variables. J Phys Ther Sci. 2014;26(5):759-62.

Engelson MA, Bruns R, Nightingale CJ, Bardwell KM, Mason CA, Tu S, et al. Validation of the OptoGait System for Monitoring Treatment and Recovery of Post-Concussion Athletes. J Chiropr Med. 2017;16(2):163-9.

Kyrarini M, Wang X, Gräser A, editors. Comparison of vision-based and sensor-based systems for joint angle gait analysis. Medical Measurements and Applications (MeMeA), 2015 IEEE International Symposium on; 2015: IEEE.

Sayeed T, Samà A, Català A, Cabestany J, editors. Comparison and adaptation of step length and gait speed estimators from single belt worn accelerometer positioned on lateral side of the body. Intelligent Signal Processing (WISP), 2013 IEEE 8th International Symposium on; 2013: IEEE.

Breen S, Stephenson ML, Jensen R, Drum S, editors. Changes in running gait parameters during a 161 km trail race. ISBS-Conference Proceedings Archive; 2014.

Mackala K, Stodolka J, Siemienski A, Coh M. Biomechanical analysis of squat jump and countermovement jump from varying starting positions. J Strength Cond Res. 2013;27(10):2650-61.

Dworak LB, Murawa M, Owsian M, Maczynski J, Kabacinski J, Rzepnicka A. Three point crutch gait from the perspective of biomechanics and kinesiology. State of knowledge and idea behind the research. Chir Narzadow Ruchu Ortop Pol. 2011;76(5):305-12, 278-85.

Struzik A, Pietraszewski B, Zawadzki J. Biomechanical analysis of the jump shot in basketball. J Hum Kinet. 2014;42:73-9.

Ardern CL, Pizzari T, Wollin MR, Webster KE. Hamstrings strength imbalance in professional football (soccer) players in Australia. J Strength Cond Res. 2015;29(4):997-1002.

de Araujo Ribeiro Alvares JB, Rodrigues R, de Azevedo Franke R, da Silva BG, Pinto RS, Vaz MA, et al. Inter-machine reliability of the Biodex and Cybex isokinetic dynamometers for knee flexor/extensor isometric, concentric and eccentric tests. Phys Ther Sport. 2015;16(1):59-65.

Impellizzeri FM, Bizzini M, Rampinini E, Cereda F, Maffiuletti NA. Reliability of isokinetic strength imbalance ratios measured using the Cybex NORM dynamometer. Clin Physiol Funct Imaging. 2008;28(2):113-9.

Hidler J, Brennan D, Black I, Nichols D, Brady K, Nef T. ZeroG: overground gait and balance training system. J Rehabil Res Dev. 2011;48(4):287-98.

Fenuta AM, Hicks AL. Muscle activation during body weight-supported locomotion while using the ZeroG. J Rehabil Res Dev. 2014;51(1):51-8.

Mikami Y, Fukuhara K, Kawae T, Kimura H, Ochi M. The effect of anti-gravity treadmill training for prosthetic rehabilitation of a case with below-knee amputation. Prosthet Orthot Int. 2015;39(6):502-6.

Bugbee WD, Pulido PA, Goldberg T, D'Lima DD. Use of an Anti-Gravity Treadmill for Early Postoperative Rehabilitation After Total Knee Replacement: A Pilot Study to Determine Safety and Feasibility. Am J Orthop (Belle Mead NJ). 2016;45(4):E167-73.

McNeill DK, de Heer HD, Bounds RG, Coast JR. Accuracy of unloading with the anti-gravity treadmill. J Strength Cond Res. 2015;29(3):863-8.

Saxena A, Granot A. Use of an anti-gravity treadmill in the rehabilitation of the operated achilles tendon: a pilot study. J Foot Ankle Surg. 2011;50(5):558-61.

Descargas

Publicado

2019-12-31

Cómo citar

Alfonso Mantilla, J. I. (2019). Herramientas tecnológicas para el estudio e intervención de la biomecanica en el deporte de alto rendimiento: una mirada desde fisioterapia. Revista Iberoamericana De Ciencias De La Actividad Física Y El Deporte, 8(3), 67–78. https://doi.org/10.24310/riccafd.2019.v8i3.7491

Número

Sección

Artículos

Artículos más leídos del mismo autor/a