Próximo(s)

Modelización del precio del agua ajustado al consumo real mediante una curva sigmoide:

Una propuesta para España

Autores/as

Palabras clave:

Curva sigmoide, precio, tarifa, agua, algoritmo de Levenberg-Marquardt

Resumen

La adecuada determinación del precio de facturación del agua es esencial para la sostenibilidad. Los esquemas de facturación suelen basarse en bloques de precio (escalones), para los que se fija una tarifa. En este contexto surge el problema de definir una facturación ajustada en función de la parte correspondiente a la sección variable del precio, que es la dependiente del consumo, porque es ese consumo en el que contribuye a la elasticidad de la demanda. En este trabajo se propone una modelización del precio del agua ajustado al consumo real mediante una curva sigmoide con algoritmo de Levenberg-Marquardt. Esta función se contrasta con datos municipales de tarifas de agua en España, por tratarse de un escenario idóneo con una multitud de tarifas y escalones establecidos en cada municipio. Los resultados muestran que la aplicación de esta función para determinar el precio a facturar en función de consumos reales tiene relevantes implicaciones, ya que permite un mejor ajuste del precio en función del consumo, sin suponer un menoscabo para los ingresos por facturación de agua, ni generar alteraciones significativas para el consumidor. Además, la propuesta de facturación que se realiza permitiría al usuario, por una parte, un mejor conocimiento del consumo vía importe y, por otra parte, posibilitaría que la administración realizara un mejor pronóstico, sobre todo si se incorporara como variable en contadores inteligentes. Asimismo, la propuesta podría suponer un incentivo al ahorro de agua, porque elimina la percepción de tarifa plana implícita en la tarificación por bloques

Descargas

Los datos de descargas todavía no están disponibles.

Publicación Facts

Metric
Este artículo
Otros artículos
Revisión pares 
2.4 promedio

Perfil de revisores  N/D

Información adicional autores

Información adicional autores
Este artículo
Otros artículos
Datos de investigación disponibles 
##plugins.generic.pfl.dataAvailability.unsupported##
##plugins.generic.pfl.averagePercentYes##
Financiación 
N/D
32% con financiadores
Conflicto de intereses 
N/D
##plugins.generic.pfl.averagePercentYes##
Metric
Para esta revista
Otras revistas
Artículos aceptados 
Artículos aceptados: 4%
33% aceptado
Días hasta la publicación 
Días hasta la publicación
145

Indexado: {$indexList}

    Indexado en
Perfil de director y equipo editorial
##plugins.generic.pfl.profiles##
Sociedad Académica/Grupo 
N/D
Editora: 
UMA Editorial. Universidad de Málaga

Citas

Abushammal, M. F. M., & Bawazir, A. K. (2017). Domestic water demand forecasting for Makkah Saudi Arabia. European Water, 58, 481-487.

Aina, Y.A., Wafer, A., Ahmed, F., Alshuwaikhat, H.M., 2019. Top-down sustainable urban development? Urban governance transformation in Saudi Arabia. Cities. 90, 272–281. Jul 1. https://doi.org/10.1016/j.cities.2019.03.003

AlHamad, I. M., Al Hemyari, O., Shashati, A., Al Seraihi, H., Albahlooli, H., Ewim, D. R. E., & Al Nuaimi, S. (2023). An integrated approach to water conservation: fuzzy logic assessment of water tariffs in Abu Dhabi Emirate’s residential sector. Bulletin of the National Research Centre, 47(1), 160. https://doi.org/10.1186/s42269-023-01130-w

Ali, R., Kuriqi, A., Abubaker, S., Kisi, O., 2019. Hydrologic alteration at the upper and middle part of the yangtze river, China: towards sustainable water resource management under increasing water exploitation. Sustainability 11 (19), 5176. https://doi.org/10.3390/su11195176

Babamiri, A. S., Pishvaee, M. S., & Mirzamohammadi, S. (2020). The analysis of financially sustainable management strategies of urban water distribution network under increasing block tariff structure: A system dynamics approach, Sustainable Cities and Society, 60, 102193. https://doi.org/10.1016/j.scs.2020.102193

Bano, R., Khiadani, M., & Nyam, Y. S. (2022). System archetypes underlying formal-informal urban water supply dynamics. Water Resources Management, 36(13), 4995-5010. http://dx.doi.org/10.1007/s11269-022-03288-w

Baños, H. L., Ruiz Gil, T., del Toro Benitez, M., & Miranda Cabrera, I. (2016). Consumo y respuesta funcional de Nesidiocoris tenuis Reuter (Hemiptera: Miridae) frente a estadios inmaduros de Bemisia tabaco Gennadius (Hemiptera: Aleyrodidae). Revista de Protección Vegetal, 31(3), 217-223.

Barberán, R., López-Laborda, J., & Rodrigo, F. (2022). The perception of residential water tariff, consumption, and cost: evidence of its determinants using survey data. Water Resources Management, 36(9), 2933-2952.

https://doi.org/10.1007/s11269-022-03134-z

Barboza, L. V., Francisco, J. B., & Zambaldi, M. C. (2010). Restoring solution of electric network equations: an approach using the augmented lagrangean algorithm. IEEE Latin America Transactions, 8(6), 670-677. https://doi.org/10.1109/TLA.2010.5688094

Beal, C. D., Stewart, R. A., & Fielding, K. (2013). A novel mixed method smart metering approach to reconciling differences between perceived and actual residential end use water consumption. Journal of Cleaner Production, 60, 116-128. https://doi.org/10.1016/j.jclepro.2011.09.007

Beal, C.D., Stewart, R.A., Fielding, K., 2013. A novel mixed method smart metering approach to reconciling differences between perceived and actual residential end use water consumption. J. Clean. Prod. https://doi.org/10.1016/j.jclepro.2011.09.007.

Ben Zaied, Y., Taleb, L., Ben Lahouel, B., & Managi, S. (2022). Sustainable water demand management and incentive tariff: Evidence from a quantile-on-quantile approach. Environmental Modeling and Assessment, 27(6), 967-980.

https://doi.org/10.1007/s10666-021-09814-1

Binet, M. E., Carlevaro, F., & Paul, M. (2014). Estimation of residential water demand with imperfect price perception. Environmental and Resource Economics, 59, 561-581. https://doi.org/10.1007/s10640-013-9750-z

Boudhaouia, A., & Wira, P. (2021). A real-time data analysis platform for short-term water consumption forecasting with machine learning. Forecasting, 3(4), 682-694. https://doi.org/10.3390/forecast3040042

de Sousa, C. O. M., & Dias Fouto, N. M. M. (2024). Why do people save water? A systematic review of household water consumption behaviour in times of water availability uncertainty. AQUA—Water Infrastructure, Ecosystems and Society, 73(8), 1565-1580. https://doi.org/10.2166/aqua.2024.259

Deyà-Tortella, B., Garcia, C., Nilsson, W., & Tirado, D. (2016). The effect of the water tariff structures on the water consumption in mallorcan hotels. Water Resources Research, 52(8), 6386-6403. https://doi:10.1002/2016WR018621

Deyà-Tortella, B., Garcia, C., Nilsson, W., & Tirado, D. (2017). Analysis of water tariff reform on water consumption in different housing typologies in Calviá (Mallorca). Water, 9(6), 425. https://doi:10.3390/w9060425

Echeverría, J. M. A. (2020). Cross-country evidence for social dimensions of urban water consumption during droughts. Journal of Cleaner Production, 260, 120895.

https://doi.org/10.1016/j.jclepro.2020.120895

Franco, D. B., & Steiner, M. T. A. (2017). New strategies for initialization and training of radial basis function neural networks. IEEE Latin America Transactions, 15(6), 1182-1188. http://dx.doi.org/10.1109/TLA.2017.7932707

García-Valiñas, M. Á., & Suárez-Fernández, S. (2022). Are economic tools useful to manage residential water demand? A review of old issues and emerging topics. Water, 14(16), 2536. https://doi.org/10.1007/s10640-021-00611-8

García-Valiñas, M. Á., Martínez-Espiñeira, R., & Suárez-Varela Maciá, M. (2021). Price and consumption misperception profiles: The role of information in the residential water sector. Environmental and Resource Economics, 80, 821-857.

García-Valiñas, M., & Arbués, F. (2021). Wastewater Tariffs in Spain. In Oxford Research Encyclopedia of Global Public Health.

https://doi.org/10.1093/acrefore/9780190632366.013.282

How, M.L., Cheah, S.M., Chan, Y.J., Khor, A.C., Say, E.M., 2020. Artificial intelligence-enhanced decision support for informing global sustainable development: a human-centric AI-thinking approach. Information. 11 (1), 39. https://doi.org/ 10.3390/info11010039

Instituto Nacional de Estadística (INE) (2025). Relación de Municipios y sus Códigos por Provincias. Recuperado de https://www.ine.es/dyngs/INEbase/es/operacion.htm?c=Estadistica_C&cid=1254736177031&menu=ultiDatos&idp=1254734710990 (18/05/2025).

Inman, D., & Jeffrey, P. (2006). A review of residential water conservation tool performance and influences on implementation effectiveness. Urban Water Journal, 3(3), 127-143. http://dx.doi.org/10.1080/15730620600961288

Ishak, A. F., Lee, W. K., & Lim, F. H. (2024). Characterisation of basin water allocation benefit function using a sigmoid-type S-curve logistic equation. AQUA—Water Infrastructure, Ecosystems and Society, 73(5), 1048-1059.

http://dx.doi.org/10.2166/aqua.2024.075

Katz, D., Grinstein, A., Kronrod, A., Nisan, U. (2016). Evaluating the effectiveness of a water conservation campaign: combining experimental and field methods. J. Environ. Manag. https://doi.org/10.1016/j.jenvman.2016.05.049

Klassert, C., Sigel, K., Klauer, B., & Gawel, E. (2018). Increasing block tariffs in an arid developing country: A discrete/continuous choice model of residential water demand in Jordan. Water, 10(3), 248. https://doi:10.3390/w10030248

Lee, S., Pomeroy, C., & Burian, S. (2021). Setting future water rates for sustainability of a water distribution system. Journal of Water Resources Planning and Management, 147(2), 04020108.

http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0001313

Liu, D., Zhang, G., Li, H., Fu, Q., Li, M., Faiz, M.A., Ali, S., Li, T., Khan, M.I., 2019. Projection pursuit evaluation model of a regional surface water environment based on an ameliorative moth-flame optimization algorithm. Ecol. Indic. 107, 105674. Dec 1. https://doi.org/10.1016/j.ecolind.2019.105674

López-Astilleros, O., Vinay Vadillo, J. C., Villegas-Aparicio, Y., López Guerrero, I., & Lozano-Trejo, S. (2020). Dinámica de crecimiento y curvas de extracción de nutrientes de Pennisetum sp.(Maralfalfa). Revista mexicana de ciencias pecuarias, 11(1), 255-265. https://doi.org/10.22319/rmcp.v11i1.4674

Lowe, B., Lynch, D., Lowe, J., 2014. The role and application of social marketing in managing water consumption: a case study. Int. J. Nonprofit Voluntary Sect. Mark. https://doi.org/10.1002/nvsm.1484.

Lucas, N. P., & Cordery, I. (2019). Effects of heightened price awareness on urban water consumption. Australasian Journal of Water Resources, 23(2), 129-136. http://dx.doi.org/10.3390/w15071309

Ma, X., Wu, D., & Zhang, S. (2018). Multiple goals dilemma of residential water pricing policy reform: Increasing block tariffs or a uniform tariff with rebate? Sustainability, 10(10), 3526. https://doi:10.3390/su10103526

Macchiaroli, M., Dolores, L., & De Mare, G. (2023). Design the water tariff structure: application and assessment of a model to balance sustainability, cost recovery and wise use. Water, 15(7), 1309.

Maldonado-Devis, M., & Almenar-Llongo, V. (2021). A panel data estimation of domestic water demand with IRT tariff structure: the case of the city of Valencia (Spain). Sustainability, 13(3), 1414. http://dx.doi.org/10.3390/su13031414

Meyer, B. E., Nguyen, K., Beal, C. D., Jacobs, H. E., & Buchberger, S. G. (2021). Classifying household water use events into indoor and outdoor use: improving the benefits of basic smart meter data sets. Journal of Water Resources Planning and Management, 147(12), 04021079.

https://doi.org/10.1061/(ASCE)WR.1943-5452.0001471

Modrovits, K., Csepregi, A., Kovácsné Székely, I., Hatvani, I. G., & Kovács, J. (2021). Comparison of Various Growth Curve Models in Characterizing and Predicting Water Table Change after Intensive Mine Dewatering Is Discontinued in an East Central European Karstic Area. Water, 13(8), 1047. https://doi.org/10.3390/w13081047

Naciones Unidas (2015a). ODS 6. Agua limpia y saneamiento. Recuperado de https://www.un.org/sustainabledevelopment/es/water-and-sanitation/ (09/05/2025).

Naciones Unidas (2015b). ODS 3. Salud y bienestar. Recuperado de https://www.un.org/sustainabledevelopment/es/health/ (09/05/2025).

Naciones Unidas (2015c). ODS 2. Hambre cero. Recuperado de https://www.un.org/sustainabledevelopment/es/hunger/ (09/05/2025).

Naciones Unidas (2015d). ODS 11. Ciudades y comunidades sostenibles. Recuperado de https://www.un.org/sustainabledevelopment/es/cities/ (09/05/2025).

Naciones Unidas (2015e). ODS 12. Producción y consumo responsables. Recuperado de https://www.un.org/sustainabledevelopment/es/sustainable-consumption-production/ (09/05/2025).

Naciones Unidas (2015f). ODS 13. Acción por el clima. Recuperado de https://www.un.org/sustainabledevelopment/es/climate-change-2/ (09/05/2025).

Naciones Unidas (2015g). ODS 14. Vida submarina. Recuperado de https://www.un.org/sustainabledevelopment/es/oceans/ (09/05/2025).

Naciones Unidas (2015h). ODS 15. Vida de ecosistemas terrestres. Recuperado de https://www.un.org/sustainabledevelopment/es/biodiversity/ (09/05/2025).

Nagaraj, A., Kotamreddy, G. R., Choudhary, P., Katiyar, R., & Botre, B. A. (2021). Leak detection in smart water grids using EPANET and machine learning techniques. IETE Journal of Education, 62(2), 71-79. https://doi.org/10.1080/09747338.2021.1984317

Nagpal, T., Rawlings, H., & Balac, M. (2020). Understanding water demand and usage in Mandalay city, Myanmar as a basis for resetting tariffs. Journal of Water, Sanitation, and Hygiene for Development, 10(4), 680-690. https://doi:10.2166/washdev.2020.076

Peleg, M. (2023). Empirical models of sigmoid and non-sigmoid hydration and moisture sorption curves. Food Engineering Reviews, 15(1), 15-23. https://doi.org/10.1007/s12393-022-09328-w

Pérez-López, D., Memmi, H., Gijón, M. C., Rapoport, H. F., & Couceiro, J. F. (2014). Indicadores del crecimiento de la aceituna para la programación de riego deficitario controlado. http://hdl.handle.net/10261/160544

Pinto, F. S., & Marques, R. C. (2016). Tariff suitability framework for water supply services: establishing a regulatory tool linking multiple stakeholders’ objectives. Water Resources Management, 30, 2037-2053. https://doi.org/10.1007/s11269-016-1268-z

Pinto, F. S., de Carvalho, B., & Marques, R. C. (2021). Adapting water tariffs to climate change: Linking resource availability, costs, demand, and tariff design flexibility. Journal of Cleaner Production, 290, 125803. https://doi:10.1016/j.jclepro.2021.125803

Piotrowski, A. P., & Napiorkowski, J. J. (2011). Optimizing neural networks for river flow forecasting–Evolutionary Computation methods versus the Levenberg–Marquardt approach. Journal of hydrology, 407(1-4), 12-27. https://doi.org/10.1016/j.jhydrol.2011.06.019

Ran, J., Ran, H., Ma, L., Jennings, S. A., Yu, T., Deng, X., ... & Hu, X. (2023). Quantifying water productivity and nitrogen uptake of maize under water and nitrogen stress in arid Northwest China. Agricultural Water Management, 285, 108370. https://doi.org/10.1016/j.agwat.2023.108370

Randolph, B., Troy, P., 2008. Attitudes to conservation and water consumption. Environ. Sci. Pol. 11 (5), 441e455. https://doi.org/10.1016/j.envsci.2008.03.003.

Ravnik, J., Jovanovac, J., Trupej, A., Vištica, N., & Hriberšek, M. (2021). A sigmoid regression and artificial neural network models for day-ahead natural gas usage forecasting. Cleaner and Responsible Consumption, 3, 100040. http://dx.doi.org/10.1016/j.clrc.2021.100040

Razumova, M., Rey-Maquieira, J., & Lozano, J. (2016). The role of water tariffs as a determinant of water saving innovations in the hotel sector. International Journal of Hospitality Management, 52, 78-86. https://doi:10.1016/j.ijhm.2015.09.011

Reynaud A and Romano G (2018) Advances in the economic analysis of residential Water use: An introduction. Water 10, 1162.

Rodriguez-Sanchez, C., Schuitema, G., Claudy, M., Sancho-Esper, F., 2018. How trust and emotions influence policy acceptance: the case of the Irish water charges. Br. J. Soc. Psychol. https://doi.org/10.1111/bjso.12242.

Rodriguez-Toro, V. A., Garzón, J. E., & López, J. A. (2011). Control neuronal por modelo inverso de un servosistema usando algoritmos de aprendizaje Levenberg-marquardt y Bayesiano. arXiv preprint arXiv:1111.4267. https://doi.org/10.48550/arXiv.1111.4267

Ruiz Gómez, E., Díaz García, S., & González Pérez, J. (2024, March). Temporal Scale SIgmoid Curve (TESIC): A tool to characterize short-term demand variability at water supply systems. In 2nd International Join Conference on Water Distribution System Analysis (WDSA) & Computing and Control in the Water Industry (CCWI). Editorial Universitat Politècnica de València. https://doi:10.4995/WDSA-CCWI2022.2022.14145

Sahin, O., Bertone, E., & Beal, C. D. (2017). A systems approach for assessing water conservation potential through demand-based water tariffs. Journal of Cleaner Production, 148, 773-784. https://doi:10.1016/j.jclepro.2017.02.051

Salido, M. J. V. M. (2024). The “Price” of Water in Andalusia: An Approach to the Tariff Systems of the Domestic Water Supply Service. In Ecological crisis and water supply: the case of Andalusia in the Spanish hydrological context (pp. 187-209). Brill. http://dx.doi.org/10.1163/9789004679634_011

Sapna, S., Tamilarasi, A., & Kumar, M. P. (2012). Backpropagation learning algorithm based on Levenberg Marquardt Algorithm. Comp Sci Inform Technol (CS and IT), 2, 393-398. http://dx.doi.org/10.5121/csit.2012.2438

Satyanaga, A., Rahardjo, H., Leong, E. C., & Wang, J. Y. (2013). Water characteristic curve of soil with bimodal grain-size distribution. Computers and Geotechnics, 48, 51-61. https://doi.org/10.1016/j.compgeo.2012.09.008

Descargas

Publicado

2025-11-21

Cómo citar

Hontoria, J. F. (2025). Modelización del precio del agua ajustado al consumo real mediante una curva sigmoide:: Una propuesta para España. Revista Electrónica De Comunicaciones Y Trabajos De ASEPUMA. Recuperado a partir de https://www.revistas.uma.es/index.php/recta/article/view/21172

Número

Sección

Artículos