AUTOPHAGY IN PLANTS: THE SECRET MECHANISM THAT ENSURES THEIR SURVIVAL

Authors

  • Carlos Cardeñas Echevarría Universidad de Málaga Spain

DOI:

https://doi.org/10.24310/enbio.17.191.2025.20514

Keywords:

Autophagy, Plants, Stress, Development, Environmental conditions

Abstract

Plants are sessile organisms, meaning they must face various challenges to ensure their survival, such as predation and environmental conditions. To cope with these challenges, they have developed different mechanisms throughout evolution, with autophagy being a notable one. Autophagy is a metabolic process that allows the removal of unwanted cellular content and the recycling of nutrients. This article explains the types of autophagy in plants and its stages, as well as the various roles it plays in plant development, metabolism, and stress responses.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Publication Facts

Metric
This article
Other articles
Peer reviewers 
1
2.4

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
N/A
32%
Competing interests 
N/A
11%
Metric
This journal
Other journals
Articles accepted 
3%
33%
Days to publication 
377
145

Indexed in

Editor & editorial board
profiles
Academic society 
N/A
Publisher 
Uma Editorial. Universidad de Málaga

References

Hong-Yun Zeng, Ping Zheng, Ling-Yan Wang, He-Nan Bao, Sunil Kumar Sahu & Nan Yao. Autophagy Regulation of Innate Immunity. Advances in Experimental Medicine and Biology 1209, 23-43 (2022).

Iglesias-Fernández, R. & Vicente-Carbajosa, J. A View into Seed Autophagy: From Development to Environmental Responses. Plants 11, 3247 (2022).

Luo M, Law K, He Y, Chung K, Po M, Feng L, Chung K, Gao C, Zhuang X & Jiang L. Arabidopsis AUTOPHAGY-RELATED2 is essential for ATG18a and ATG9 trafficking during autophagosome closure. Plant Physiol 193, 304–321 (2023).

Su T, Li X, Yang M, Shao Q, Zhao Y, Ma C, Wang P. Autophagy: An Intracellular Degradation Pathway Regulating Plant Survival and Stress Response. Frontiers in Plant Science 11, 164. Preprint at https://doi.org/10.3389/fpls.2020.00164 (2020).

Prinz, W. A., Toulmay, A. & Balla, T. The functional universe of membrane contact sites. Nature Reviews Molecular Cell Biology 21, 7–24 Preprint at https://doi.org/10.1038/s41580-019-0180-9 (2020).

Mishra, D. Closing the loop: Three musketeers of autophagy-ATG2, ATG18a, and ATG9. Plant Physiology 193, 177–178 Preprint at https://doi.org/10.1093/plphys/kiad369 (2023).

Tang, J. & Bassham, D. C. Autophagy during drought: function, regulation, and potential application. Plant Journal 109, 390–401 (2022).

Michalak, K. M., Wojciechowska, N., Marzec-Schmidt, K. & Bagniewska-Zadworna, A. Conserved autophagy and diverse cell wall composition: unifying features of vascular tissues in evolutionarily distinct plants. Ann Bot 133, 559–571 (2024).

Kurusu T, Koyano T, Kitahata N, Kojima M, Hanamata S, Sakakibara H, Kuchitsu K. et al. Autophagy-mediated regulation of phytohormone metabolism during rice anther development. Plant Signal Behav 12, 9 (2017).

Wu M, Zhang Q, Wu G, Zhang L, Xu X, Hu X, Gong Z, Chen Y, Li Z, Li H, Deng W. SlMYB72 affects pollen development by regulating autophagy in tomato. Hortic Res 10, 286 (2023).

Sánchez-Sevilla, J. F., Botella, M. A., Valpuesta, V. & Sanchez-Vera, V. Autophagy Is Required for Strawberry Fruit Ripening. Front Plant Sci 12, 688481 (2021).

Published

2025-09-29

How to Cite

Cardeñas Echevarría, C. (2025). AUTOPHAGY IN PLANTS: THE SECRET MECHANISM THAT ENSURES THEIR SURVIVAL. Encuentros En La Biología, 17(191). https://doi.org/10.24310/enbio.17.191.2025.20514

Issue

Section

Artículos