Invención de problemas de proporcionalidad en la formación de profesores(as) de secundaria
DOI:
https://doi.org/10.24310/mar.6.2.2025.18994Palabras clave:
invención de problemas, proporcionalidad, formación de profesores, conocimiento didáctico-matemáticoResumen
La invención de problemas matemáticos con una finalidad didáctica requiere de diversos conocimientos y competencias específicas en profesores(as), por lo que debe ser un objetivo de los programas de formación docente. Este trabajo describe los resultados de una intervención formativa con futuros(as) profesores(as) de educación secundaria costarricenses en la que se persigue desarrollar la competencia de creación de problemas de proporcionalidad en diferentes contextos. Consiste en un estudio descriptivo-cualitativo, apoyado en las herramientas teóricas y metodológicas del Enfoque Ontosemiótico. Los resultados muestran las dificultades de los(as) participantes para crear problemas pertinentes que respondan a un nivel de complejidad determinado, así como para identificar las dificultades que puede ocasionar al alumnado un problema dado y cómo modificarlo para superarlas. Se observan mejores resultados en la creación de problemas aritméticos que en los contextos geométrico y probabilístico. Se concluye la necesidad de seguir investigando y diseñando propuestas de acciones formativas sobre creación de problemas como medio por el que docentes pueden ayudar a su alumnado a aprender matemáticas.
Descargas
Métricas
Publicación Facts
Perfil de revisores N/D
Información adicional autores
Indexado: {$indexList}
-
Indexado en
- Sociedad Académica/Grupo
- N/D
- Editora:
- Universidad de Málaga
Citas
Balderas, R. G., Block, D. y Guerra, M. T. (2014). “Sé cómo se hace, pero no por qué”: Fortalezas y debilidades de los saberes sobre la proporcionalidad de maestros de secundaria. Educación Matemática, 26(2), 7–32. https://bit.ly/48edyhE
Batanero, C., Gómez, E., Contreras, J. M. y Díaz, C. (2015). Conocimiento matemático de profesores de primaria en formación para la enseñanza de la probabilidad: Un estudio exploratorio. Práxis Educativa, 10(1), 11–34. https://doi.org/10.5212/PraxEduc.v.10i1.0001
Bayazit, I. y Kirnap-Donmez, S. M. (2017). Prospective teachers’ proficiencies at problem posing in the context of proportional reasoning. Turkish Journal of Computer and Mathematics Education, 8(1), 130–160. https://bit.ly/49fgWtO
Ben-Chaim, D., Keret, Y. e Ilany, B. S. (2012). Ratio and proportion: Research and teaching in mathematics teachers’ education. Sense Publisher. https://doi.org/10.1007/978-94-6091-784-4
Bryant, P. y Nunes, T. (2012). Children’s understanding of probability: A literature review (full report). The Nuffield Foundation. https://bit.ly/4bxPKbl
Buforn, A., Llinares, S., Fernández, C., Coles, A. y Brown, L. (2020). Pre-service teachers’ knowledge of the unitizing process in recognizing students’ reasoning to propose teaching decisions. International Journal of Mathematics Education in Science and Technology, 1–9. https://doi.org/10.1080/0020739X.2020.1777333
Buforn, A. y Fernández, C. (2014). Conocimiento de matemáticas especializado de los estudiantes para maestro de primaria en relación al razonamiento proporcional. BOLEMA, 28(48), 21–41. https://doi.org/10.1590/1980-4415v28n48a02
Burgos, M., Beltrán-Pellicer, P., Giacomone, B. y Godino, J. D. (2018). Conocimientos y competencia de futuros profesores de matemáticas en tareas de proporcionalidad. Educação e Pesquisa, 44, 1–22. https://doi.org/10.1590/s1678-4634201844182013
Burgos, M. y Chaverri, J. (2022). Knowledge and Competencies of Prospective Teachers for the Creation of Proportionality Problems. Acta Scientiae, 24(6), 270–306. https://doi.org/10.17648/acta.scientiae.7061
Burgos, M. y Chaverri, J. (2023). Creación de problemas de proporcionalidad en la formación de docentes de primaria. Uniciencia, 33(1), 1–24. https://doi.org/10.15359/ru.37-1.14
Burgos, M. y Godino, J. D. (2020). Prospective primary school teachers’ competence for analysing the difficulties in solving proportionality problem. Mathematics Education Research Journal. https://doi.org/10.1007/s13394-020-00344-9
Burgos, M. y Godino J. D. (2022). Assessing the Epistemic Analysis Competence of Prospective Primary School Teachers on Proportionality Tasks. International Journal of Science and Mathematics Education, 20, 367–389. https://doi.org/10.1007/s10763-020-10143-0
Cohen, L., Manion, L. y Morrison, K. (2018). Research methods in education (8va ed.). Routledge. https://doi.org/10.4324/9781315456539
Copur-Gencturk, Y., Baek, C. y Doleck, T. (2023) Closer Look at Teachers’ Proportional Reasoning. International Journal of Science and Mathematics Education, 21, 113–129. https://doi.org/10.1007/s10763-022-10249-7
Ellerton, N. F. (2013). Engaging pre-service middle-school teacher-education students in mathematical problem posing: development of an active learning framework. Educational Studies in Mathematics, 83(1), 87–101. https://doi.org/10.1007/s10649-012-9449-z
Fernández, M. y Carrillo, J. (2020). Un acercamiento a la forma en que los estudiantes de primaria formulan problemas. Revista de Educação Matemática, 17, 1–19. https://doi.org/10.37001/remat25269062v17id257
Godino, J. D., Beltrán-Pellicer, P., Burgos, M. y Giacomone, B. (2017). Significados pragmáticos y configuraciones ontosemióticas en el estudio de la proporcionalidad. En J. M. Contreras, P. Arteaga, G. R. Cañadas, M. M. Gea, B. Giacomone y M. M. López-Martín (Eds.), Actas del Segundo CIVEOS. https://bit.ly/49jmDak
Godino, J. D., Batanero, C. y Font, V. (2007). The onto-semiotic approach to research in mathematics education. ZDM. The International Journal on Mathematics Education, 39(1-2), 127–135. https://doi.org/10.1007/s11858-006-0004-1
Godino, J. D., Giacomone, B., Batanero, C. y Font, V. (2017). Enfoque Ontosemiótico de los Conocimientos y Competencias del Profesor de Matemáticas. Bolema, 31(57), 90–113. https://doi.org/10.1590/1980-4415v31n57a05
Godino, J., Font, V., Wilhelmi, M. y Lurduy, O. (2009). Sistemas de prácticas y configuraciones de objetos y procesos como herramientas para el análisis semiótico en educación matemática. XIII Simposio de la SEIEM. https://bit.ly/42F0voj
Grundmeier, T. A. (2015). Developing the Problem-Posing Abilities of Prospective Elementary and Middle School Teachers. En F.M. Singer et al. (Eds.), Mathematical Problem Posing, Research in Mathematics Education (pp. 411–431). https://doi.org/10.1007/978-1-4614-6258-3_20
Isik, A., Isik, C. y Kar, T. (2011). Analysis of the problems related to verbal and visual representations posed by pre-service mathematics teachers. Pamukkale University Journal of Education, 30(1), 39–49. https://bit.ly/49b9eB2
Kar, T. (2016). Prospective middle school mathematics teachers’ knowledge of linear graphs in context of problem-posing. International Electronic Journal of Elementary Education, 8(4), 643-658. https://bit.ly/3SU382b
Kılıç, Ç. (2017). A new problem-posing approach based on problem-solving strategy: Analyzing pre-service primary school teachers’ performance. Educational Sciences: Theory & Practice, 17, 771–789. https://doi.org/10.12738/estp.2017.3.0017
Koichu, B. y Kontorovich, I. (2013). Dissecting success stories on mathematical problem posing: A case of the Billiard Task. Educational Studies in Mathematics, 83(1), 71–86. https://doi.org/10.1007/s10649-012-9431-9
Lamon, S. (2007). Rational number and proportional reasoning. Toward a theoretical framework for research. En F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 629–667). Information Age Pub Inc. https://bit.ly/4bCZYad
Leavy, A. y Hourigan, M. (2020). Posing mathematically worthwhile problems: developing the problem‑posing skills of prospective teachers. Journal of Mathematics Teacher Education, 23, 341–361. https://doi.org/10.1007/s10857-018-09425-w
Llinares, S. (2003). Fracciones, decimales y razón. Desde la relación parte-todo al razonamiento proporcional. En M. C. Chamorro (Coord.), Didáctica de las matemáticas para Primaria (pp. 187-220). Pearson Prentice Hall. https://bit.ly/3HZsc1y
Malaspina, U. (2016). Creación de problemas: sus potencialidades en la enseñanza y aprendizaje de las Matemáticas. En A. Ruiz (Ed.), Cuadernos de Investigación y Formación en Educación Matemática (pp. 321–331). Universidad de Costa Rica. https://bit.ly/3UyYLLa
Malaspina, U. y Vallejo, E. (2014). Creación de problemas en la docencia e investigación. En U. Malaspina (Ed.), Reflexiones y Propuestas en Educación Matemática (pp. 7–54). Editorial Moshera S.R.L. https://bit.ly/48aaW4g
Malaspina, U., Torres, C. y Rubio, N. (2019). How to stimulate in-service teachers’ didactic analysis competence by means of problem posing. En P. Liljedahl, y L. Santos-Trigo (Eds.), Mathematical Problem Solving (pp. 133–151). Springer. https://doi.org/10.1007/978-3-030-10472-6_7
Mallart, A., Font, V. y Diez, J. (2018). Case Study on Mathematics Pre-service Teachers’ Difficulties in Problem Posing. Eurasia Journal of Mathematics, Science and Technology Education, 14(4), 1465–1481. https://doi.org/10.29333/ejmste/83682
Mallart, A., Font, V. y Malaspina, U. (2016). Reflexión sobre el significado de qué es un buen problema de en la formación inicial de maestros. Perfiles educativos, 38(152), 14–30. https://doi.org/10.22201/iisue.24486167e.2016.152.57585
Ministerio de Educación Pública (MEP) (2012). Programas de estudio de Matemáticas. San José, Costa Rica. https://bit.ly/4bANz6D
National Council Teacher Mathematics (NCTM) (2000). Principles and Standards for School Mathematics. Reston.
Norton, S. J. (2005). The construction of proportional reasoning. En H. L. Chick y J. L. Vincent (Eds.), Proceedings of the 29th Conference of the International Group for the Psychology of Mathematics Education (pp. 17–24). Melbourne, Australia: PME. https://bit.ly/4bxIzzR
OECD (2004). Marcos teóricos de PISA 2003: Conocimientos y destrezas en Matemáticas, Lectura, Ciencias y Solución de problemas. Madrid: Ministerio de Educación y Ciencia, Instituto Nacional de Evaluación y Calidad del Sistema Educativo. https://doi.org/10.1787/9789264065963-es
OECD (2013). PISA 2012 Assessment and analytical framework. Mathematics, Reading, Science, Problem Solving and Financial Literacy. OECD Publishing. http://dx.doi.org/10.1787/9789264190511-en
Pelczer, I. y Gamboa, F. (2009). Problem posing: Comparison between experts and novices. En M. Tzekaki, M. Kaldrimidou, y H. Sakonidis (Eds.), Proceedings of the 33th Conference of the International Group for the Psychology of Mathematics Education (pp. 353–360). International Group for the Psychology of Mathematics Education.
Piñeiro, J. L., Castro-Rodríguez, E. y Castro, E. (2019). Componentes de conocimiento del profesor para la enseñanza de la resolución de problemas en educación primaria. PNA 13(2), 104–129. https://doi.org/10.30827/pna.v13i2.7876
Santillana (2014). Matemática 7. Costa Rica. Santillana.
Şengül, S. y Katranci, Y. (2015). The analysis of the problems posed by prospective mathematics teachers about ‘ratio and proportion’ subject. Procedia. Social and Behavioral Sciences, 174, 1364–1370. https://doi.org/10.1016/j.sbspro.2015.01.760
Silver, E. A. (1994). On mathematical problem posing. For the Learning of Mathematics, 14(1), 19–28. https://www.jstor.org/stable/40248099?origin=JSTOR-pdf
Singer, F. y Voica, C. (2013). A problem-solving conceptual framework and its implications in designing problem-posing tasks. Educational studies in mathematics, 83(1), 9–26. https://doi.org/10.1007/s10649-012-9422-x
Supply, A. S., Vanluydt, E., Van Dooren, W. y Onghena, P. (2023). Out of proportion or out of context? Comparing 8- to 9-year-olds’ proportional reasoning abilities across fair-sharing, mixtures, and probability contexts. Educ. Stud. Math. 113, 371–388. https://doi.org/10.1007/s10649-023-10212-5
Tichá, M. y Hošpesová, A. (2013). Developing teachers’ subject didactic competence through problem posing. Educational Studies in Mathematics, 83(1), 133–143. https://doi.org/10.1007/s10649-012-9455-1
Weiland, T., Orrill, C.H., Nagar, G.G., Brown, R. y Burke, J. (2020). Framing a robust understanding of proportional reasoning for teachers. Journal of Mathematics Teacher Education, 24(2), 179–202. https://doi.org/10.1007/s10857-019-09453-0
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Márgenes Revista de Educación de la Universidad de Málaga

Esta obra está bajo una licencia internacional Creative Commons Atribución-SinDerivadas 4.0.
En la Revista Márgenes apostamos claramente por una política de acceso abierto del conocimiento científico (Veáse Declaración de Berlín).
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
-
Esta revista provee acceso libre inmediato a su contenido bajo el principio de hacer disponible gratuitamente la investigación al público. Todos los contenidos publicados en Márgenes, están sujetos a la licencia de Creative Commons Reconocimiento-SinObraDerivada 4.0 Internacional.
Es responsabilidad de los autores/as obtener los permisos necesarios de las imágenes que están sujetas a derechos de autor.
Los autores-as cuyas contribuciones sean aceptadas para su publicación en esta revista conservarán el derecho no exclusivo de utilizar sus contribuciones con fines académicos, de investigación y educativos, incluyendo el auto-archivo o depósito en repositorios de acceso abierto de cualquier tipo.
La edición electrónica de esta revista esta editada por la Editorial de la Universidad de Málaga (UmaEditorial), siendo necesario citar la procedencia en cualquier reproducción parcial o total.
- Los-as autores-as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los-as autores-as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).

